Let me start by saying that I am total noob when it comes to Machine Learning, so please excuse me if this is a stupid question.
I was making a MultinomialNB model following this tutorial.
And I was wondering if there was a way to map a single line to multiple targets classes.
For example, I have the sentence "Jesus cures cancer" and want it to map to both 'sci.med' and 'soc.religion.christian'.
Is there a way to do that in SciKit? Can I just put the same sentence twice with the different targets, or will that distort the final model?
What you are wanting to do is called multilabel classification; some scikit-learn classifiers support it, here's the documentation with more details.
If you put the same sentence twice into a model that is trying to predict one outcome, it will just confuse the model as one training example said it was one class and another said it was a different class and it is only learning to predict one class.
Yes, scikit's multinomialNB can be implemented as multilabel.
from sklearn.multiclass import OneVsRestClassifier
from sklearn.naive_bayes import MultinomialNB
classifier=OneVsRestClassifier(MultinomialNB)
You can now use "classifier" to fit your training data.
You can learn more about OneVsRestClassifier here
Related
i hope everyone is doing well
I need some help with generative models.
So im working on a project where the main task is to build a binary classification model. In the dataset which contains 300000 sample and 100 feature, there is an imbalance between the 2 classes where majority class is too much bigger than the minory class.
To handle this problem, i'm using VAE (variational autoencoders) to solve this problem.
So i started training the VAE on the minority class and then use the decoder part of the VAE to generate new or fake samples that are similars to the minority class then concatenate this new data with training set in order to have a new balanced training set.
My question is : is there anyway to evalutate generative models like vae, like is there a way to know if the data generated is similar to the real one ??
I have read that there is some metrics to evaluate generated data like inception distance and Frechet inception distance but i saw that they have been only used on image data
I wanna know if i can use them too on my dataset ?
Thanks in advance
I believe your data is not image as you say there are 100 features. What I believe that you can check the similarity between the synthesised features and the original features (the ones belong to minority class), and keep only the ones with certain similarity. Cosine similarity index would be useful for this problem.
That would be also very nice to check a scatter plot of the synthesised features with the original ones to see if they are close to each other. tSNE would be useful at this point.
I'm working on a model which takes 2 labels(say A and B) as input. But, there might be a possibility that the output that needs to be predicted is neither A nor B, and hence I want to predict can't say. Could you plz guide me how to do that?
Also, guidance with some code snippets would be appreciated.
I answered a similar question over here: Limiting probability percentage of irrelevant image in CNN
The difference in your question is that you are doing binary classification instead of multi-class classification, as in their question. To predict unknown classes, as I mentioned there, you need to change your last layer to have an output of dimension 3. Then, apply a softmax activation to that (instead of using a sigmoid, which you might be currently using), which makes it such that the probabilities of each class add up to 1.
I don't know what framework you are using to build your model, so I can't provide relevant code snippets.
I have a binary classification problem where I have around 15 features. I have chosen these features using some other model. Now I want to perform Bayesian Logistic on these features. My target classes are highly imbalance(minority class is 0.001%) and I have around 6 million records. I want to build a model which can be trained nighty or weekend using Bayesian logistic.
Currently, I have divided the data into 15 parts and then I train my model on the first part and test on the last part then I am updating my priors using Interpolated method of pymc3 and rerun the model using the 2nd set of data. I am checking the accuracy and other metrics(ROC, f1-score) after each run.
Problems:
My score is not improving.
Am I using the right approch?
This process is taking too much time.
If someone can guide me with the right approach and code snippets it will be very helpful for me.
You can use variational inference. It is faster than sampling and produces almost similar results. pymc3 itself provides methods for VI, you can explore that.
I only know this part of question. If you can elaborate your problem a bit further, maybe.. I can help you.
I am currently trying to use satellite imagery to recognize Apples orchards. And I am facing a small problem in the number of representative data for each class.
In fact my question is :
Is it possible to take randomly some different images in my "not-apples" class at each epoch because I have much more of theses (compared to the "apples" one) and I want to increase the probability my network will classify out an image unrepresentative.
Thanks in advance for your help
That is not possible in Keras. Keras will, by default, shuffle your training data and then train on it in a mini-batch fashion. However, there are still ways to re-balance your dataset.
The imbalanced training data problem that you are facing is pretty common. You have many options available to you; I list a few below:
You can adjust the relative weights of your classes using class_weight keyword of the model.fit() function.
You can "up-sample" your "apples" class or "down-sample" your "non-apples" class to have equal numbers of both classes during training.
You can generate synthetic images of your "apples" class to augment your data set. To this end, the ImageDataGenerator class in Keras can be particularly useful. This Keras tutorial is a good introduction to its usage.
In my experience, I've found #2 and #3 to be most useful. #1 is limited by the fact that the convergence of stochastic gradient descent suffers when using class weights differing by a couple orders of magnitude and smaller batch sizes.
Jason Brownlee has put together a list of tactics for dealing with imbalanced classes that might also be useful to you.
I'm using a multiclass classifier (a Support Vector Machine, via One-Vs-All) to classify data samples. Let's say I currently have n distinct classes.
However, in the scenario I'm facing, it is possible that a new data sample may belong to a new class n+1 that hasn't been seen before.
So I guess you can say that I need a form of Online Learning, as there is no distinct training set in the beginning that suits all data appearing later. Instead I need the SVM to adapt dynamically to new classes that may appear in the future.
So I'm wondering about if and how I can...
identify that a new data sample does not quite fit into the existing classes but instead should result in creating a new class.
integrate that new class into the existing classifier.
I can vaguely think of a few ideas that might be approaches to solve this problem:
If none of the binary SVM classifiers (as I have one for each class in the OVA case) predicts a fairly high probability (e.g. > 0.5) for the new data sample, I could assume that this new data sample may represent a new class.
I could train a new binary classifier for that new class and add it to the multiclass SVM.
However, these are just my naive thoughts. I'm wondering if there is some "proper" approach for this instead, e.g. using a Clustering algorithms to find all classes.
Or maybe my approach of trying to use an SVM for this is not even appropriate for this kind of problem?
Help on this is greatly appreciated.
As in any other machine learning problem, if you do not have a quality criterion, you suck.
When people say "classification", they have supervised learning in mind: there is some ground truth against which you can train and check your algorithms. If new classes can appear, this ground truth is ambiguous. Imagine one class is "horse", and you see many horses: black horses, brown horses, even white ones. And suddenly you see a zebra. Whoa! Is it a new class or just an unusual horse? The answer will depend on how you are going to use your class labels. The SVM itself cannot decide, because SVM does not use these labels, it only produces them. The decision is up to a human (or to some decision-making algorithm which knows what is "good" and "bad", that is, has its own "loss function" or "utility function").
So you need a supervisor. But how can you assist this supervisor? Two options come to mind:
Anomaly detection. This can help you with early occurences of new classes. After the very first zebra your algorithm sees it can raise an alarm: "There is something unusual!". For example, in sklearn various algorithms from random forest to one-class SVM can be used to detect unusial observations. Then your supervisor can look at them and decide whether they deserve to form an entirely new class.
Clustering. It can help you to make decision about splitting your classes. For example, after the first zebra, you decided it is not worth making a new class. But over time, your algorithm has accumulated dozens of their images. So if you run a clustering algorithm on all the observations labeled as "horses", you might end up with two well-separated clusters. And it will be again up to the supervisor to decide, whether the striped horses should be detached from the plain ones into a new class.
If you want this decision to be purely authomatic, you can split classes if the ratio of within-cluster mean distance to between-cluster distance is low enough. But it will work well only if you have a good distance metric in the first place. And what is "good" is again defined by how you use your algorithms and what your ultimate goal is.