CGPath copy lineJoin and miterLimit has no apparent affect - ios

I am offsetting a CGPath using copy(strokingWithWidth:lineCap:lineJoin:miterLimit:transform‌​:). The problem is the offset path introduces all kinds of jagged lines that seem to be the result of a miter join. Changing the miterLimit to 0 has no effect, and using a bevel line join also makes no difference.
In this image there is the original path (before applying strokingWithWidth), an offset path using miter join, and an offset path using bevel join. Why doesn't using bevel join have any affect?
Code using miter (Note that using CGLineJoin.round produces identical results):
let pathOffset = path.copy(strokingWithWidth: 4.0,
lineCap: CGLineCap.butt,
lineJoin: CGLineJoin.miter,
miterLimit: 20.0)
context.saveGState()
context.setStrokeColor(UIColor.red.cgColor)
context.addPath(pathOffset)
context.strokePath()
context.restoreGState()
Code using bevel:
let pathOffset = path.copy(strokingWithWidth: 4.0,
lineCap: CGLineCap.butt,
lineJoin: CGLineJoin.bevel,
miterLimit: 0.0)
context.saveGState()
context.setStrokeColor(UIColor.red.cgColor)
context.addPath(pathOffset)
context.strokePath()
context.restoreGState()

Here is a path consisting of two line segments:
Here's what it looks like if I stroke it with bevel joins at a line width of 30:
If I make a stroked copy of the path with the same parameters, the stroked copy looks like this:
Notice that triangle in there? That appears because Core Graphics creates the stroked copy in a simple way: it traces along the each segment of the original path, creating a copied segment that is offset by 15 points. It joins each of these copied segments with straight lines (because I specified bevel joins). In slow motion, the copy operation looks like this:
So on the inside of the joint, we get a triangle, and on the outside, we get the flat bevel.
When Core Graphics strokes the original path, that triangle is harmless, because Core Graphics uses the non-zero winding rule to fill the stroke. But when you stroke the stroked copy, the triangle becomes visible.
Now, if I scale down the line width used when I make the stroked copy, the triangle becomes smaller. And if I then increase the line width used to draw the stroked copy, and draw the stroked copy with mitered joins, the triangle can actually end up looking like it's filled in:
Now, suppose I replace that single joint in the original path with two joints connected by a very short line, creating a (very small) flat spot on the bottom:
When I make a stroked copy of this path, the copy has two internal triangles, and if I stroke the stroked copy, it looks like this:
So that's where those weird shapes star shapes come from when you make a stroked copy of your paths: very short segments creating overlapping triangles.
Note that I made my copies with bevel joins. Using miter joins when making the copy also creates the hidden triangles, because the choice of join only affects the outside of the joint, not the inside of the joint.
However, the choice of join does matter when stroking the stroked copy, because the use of miter joins makes the stars larger. See this document for a good illustration of how much the join style can affect the appearance of an acute angle.
So the miter joins make the triangles' points stick out quite far, which makes the overlapping triangles look like a star. Here's the result if I stroke the stroked copy using bevel joins instead:
The star is nigh-invisible here because the triangles are drawn with blunted corners.
If the inner triangles are unacceptable to you, you will have to write your own function (or find one on the Internet) to make a stroked copy of the path without the triangles, or to eliminate the triangles from the copy.
If your path consists entirely of flat segments, the easiest solution is probably to use an existing polygon-clipping library. The “union” operation, applied to the stroked copy, should eliminate the inner triangles. See this answer for example. Note that these libraries tend to be written in C++, so you'll probably have to write some Objective-C++ code since Swift cannot call C++ code directly.
In case you're wondering how I generated the graphics for this answer, I did it using this Swift playground.

Related

GIMP how to select from merged path

I have the path, merge from 8 subpath (because it require symmetry, I create 1/8 then merge them together)
I wanna select the picture inside the path, that is... impossible. Are there any ways to:
re-order the points inside the path
or
manual set the points position (x and y coordinate)
or
unclose any subpath (I hate this, hate to do drawing the paths over again)
or
anyway it select inside the path smarter?
thank you all.
The best you can do is splice the strokes so that you have a truly closed stroke from which you get a selection.
The ofn-path-edits plugin has a Join strokes function to connect together strokes whose end points are close enough.
But you'll have to redo part of your work: use the Join strokes function to create the closed shapes, then replicate+shift these closed shapes. And yes, this means that between the shapes, there are overlapping strokes, one for the shape on the left/top and one for the shape on the right/bottom.
At the same place there is also a path-mirror script that can create the symmetry of a stroke, and connect the ends that are on the symmetry axis.

SCNShape doesn't draw a shape for NSBezierPath

I experienced that for some NSBezierPaths SCNShape seems to be unable to draw a shape.
The path is created only using line(to:).
//...set up scene...
//Create path (working)
let path = NSBezierPath()
path.move(to: CGPoint.zero)
path.line(to: NSMakePoint(0.000000, 0.000000))
path.line(to: NSMakePoint(0.011681, 0.029526))
// more points ...
path.close()
// Make a 3D shape (not working)
let shape = SCNShape(path: path, extrusionDepth: 10)
shape.firstMaterial?.diffuse.contents = NSColor.green
let node = SCNNode(geometry: shape)
root.addChildNode(node)
For verifying that the general process of creating a SCNShape is correct, I also drew a blue shape that only differs by having different points. The blue shape gets drawn, the green shape doesn't.
You can find a playground containing the full example here. In the example you should be able to see a green and a blue shape in assistant editor. But only the blue shape gets drawn.
Do you have any idea why the green shape is not shown?
The short story: your path has way more points than it needs to, leading you to unexpected, hard to find geometric problems.
Note this bit in the documentation:
The result of extruding a self-intersecting path is undefined.
As it turns out, somewhere in the first 8 or so points, your "curve" makes enough of a turn the wrong way that the line closing the path (between the first point in the path 0,0, and the last point 32.366829, 29.713470) intersects the rest of the path. Here's an attempt at making it visible by excluding all but the first few points and the last point from a playground render (see that tiny little zigzag in the bottom left corner):
And at least on some SceneKit versions/renderers, when it tries to make a mesh out of a self-intersecting path it just gives up and makes nothing.
However, you really don't need that many points to make your path look good. Here it is if you use 1x, 1/5x, and 1/10x as many points:
If you exclude enough points overall, and/or skip the few at the beginning that make your curve zag where it should zig, SceneKit renders the shape just fine:
Some tips from diagnosing the problem:
When working with lots of coordinate data like this, I like to use ExpressibleByArrayLiteral so I can easily build an array of lots of points/vectors/etc:
extension CGPoint: ExpressibleByArrayLiteral {
public init(arrayLiteral elements: CGFloat...) {
precondition(elements.count == 2)
self.init(x: elements.first!, y: elements.last!)
}
}
var points: [CGPoint] = [
[0.000000, 0.000000],
[0.011681, 0.029526],
// ...
]
That gets me an array (and a lot less typing out things like NSPointMake over and over), so I can slice and dice the data to figure out what's wrong with it. (For example, one of my early theories was that there might be something about negative coordinates, so I did some map and min() to find the most-negative X and Y values, then some more map to make an array where all points are offset by a constant amount.)
Now, to make paths using arrays of points, I make an extension on NSBezierPath:
extension NSBezierPath {
convenience init(linesBetween points: [CGPoint], stride: Int = 1) {
precondition(points.count > 1)
self.init()
move(to: points.first! )
for i in Swift.stride(from: 1, to: points.count, by: stride) {
line(to: points[i])
}
}
}
With this, I can easily create paths from not just entire arrays of points, but also...
paths that skip parts of the original array (with the stride parameter)
let path5 = NSBezierPath(linesBetween: points, stride: 5)
let path10 = NSBezierPath(linesBetween: points, stride: 10)
(This is handy for generating playground previews a bit more quickly, too.)
paths that use some chunk or slice of the original array
let zigzag = NSBezierPath(linesBetween: Array(points.prefix(to:10)) + [points.last!])
let lopOffBothEnds = NSBezierPath(linesBetween: Array(points[1 ..< points.count < 1]))
Or both... the winning entry (in the screenshot above) is:
let path = NSBezierPath(linesBetween: Array(points.suffix(from: 10)), stride: 5)
You can get a (marginally) better render out of having more points in your path, but an even better way to do it would be to make a path out of curves instead of lines. For extra credit, try extending the NSBezierPath(linesBetween:) initializer above to add curves by keeping every nth point as part of the path while using a couple of the intermediary points as control handles. (It's no general purpose auto trace algorithm, but might be good enough for cases like this.)
In no way does this compare to Rikster's answer, but there is another way to prevent this kind of problem. It's a commercial way, and there's probably freeware apps that do similar, but this is one I'm used to using, that does this quite well.
What is 'this' that I'm talking about?
The conversion of drawings to code, by an app called PaintCode. This will allow you to see your paths and be sure they have none of the conflicts that Rickster pointed out are your issue.
Check it out here: https://www.paintcodeapp.com/
Other options are listed in answers here: How to import/parse SVG into UIBezierpaths, NSBezierpaths, CGPaths?

UIBezierPath change width of a path's segment

I'm trying to develop a drawing application, and I need to change the width of the path according to the speed of the hand.
I tried to use moveToPoint to start another subpath
myPath.moveToPoint(myPath.currentPoint)
myPath.lineWidth = myPath.lineWidth + 1
but it doesn't work, it changes the width of the entire path.
Do you know if there's a way to change only a subpath's width?
That is not possible. All UIBezierPath properties (lineWidth, flatness, ...) apply to the entire path with all its subpaths.
To draw curves with different line widths you have to create multiple bezier paths.

How to animate a human written stroke using Swift/iOS?

Objective
I am attempting to create an animated approximation of human writing, using a UIBezierPath generated from a glyph. I understand and I have read the many UIBezierPath questions which sound similar to mine (but are not the same). My goal is to create an animation that approximates the look of a human performing the writing of characters and letters.
Background
I've created a playground that I am using to better understand paths for use in animating glyphs as if they were drawn by hand.
A couple of concepts in the Apple CAShapeLayer (strokeStart and strokeEnd) really don't seem to operate as expected when animated. I think that generally people tend to think of a stroke as if done with a writing instrument (basically a straight or curved line). We consider the stroke and fill together to be a line as our writing instruments do not distinguish between stroke and fill.
But when animated, the outline of a path is constructed by line segments (fill is treated separately and it is unclear how to animate the position of the fill?). What I want to achieve is a natural human written line/curve that shows the start and end of a stroke together with the portion of the fill being added as the animation moves from start to finish. Initially this appears simple but I think it may require animating the fill position (unsure of how to do this), the stroke start/end (not sure if this required given the unexpected caveats with how the animation performs noted above), and making use of sub-paths (how to reconstruct from a known path).
Approach 1
So, I've considered the idea of a Path (CGPath/UIBezierPath). Each path actually contains all of the subpaths required to construct a glyph so perhaps recursing those subpaths and using a CAKeyframeAnimation / CABasicAnimations and an animation group showing the partially constructed subpaths would be a good approach (although the fill position and stroke of each subpath would still need to be animated from start to end?).
This approach leads to the refined question:
How to access and create UIBezierPath/CGPath (subpaths) if one has a complete UIBezierPath/CGPath?
How to animate the fill and stroke as if drawn with a writing instrument using the path/subpath information? (seemingly this implies one would need to animate the strokeStart/strokeEnd, position, and path properties of a CALayer at the same time)
NB:
As one can observe in the code, I do have the finished paths obtained from glyphs. I can see that the path description gives me path-like information. How would one take that information and recast it as an array of sub paths human-writable strokes?
(The idea here would be to convert the point information into a new data type of human-like strokes. This implies a requirement for an algorithm to identify the start, slope, endpoint and boundary of each fill)
Hints
I've noted in Pleco (an iOS app that successfully implements a similar algorithm), that each stroke is composed of a closed path that describes the human-writable stroke. UIBezierPath has a closed path based on continuous connected fills. An algorithm is needed to refine overlapping fills to create distinct closed paths for each stroke-type.
Erica Sadun has a set of path utilities available on github. I haven't fully explored these files but they might prove useful in determining discrete strokes.
UIBezierPath structure seems based on the notion of a contiguous line segments/curve. There are confluence points appearing at the intersections of fills, which represent directional path change. Could one calculate the stroke/fill angle of a curve/line segment and search other curves/lines for a corresponding confluence point? (i.e. connect a line segment across the gap of intersecting fills to produce two separate paths -- assuming one picked up the points and recreated the path with a new line segment/curve)
Introspectively: Is there a simpler method? Am I missing a critical API, a book or a better approach to this problem?
Some alternative methods (not useful - requires loading gifs or flash) for producing the desired outcome:
Good Example (using Flash) with a presentation layer showing progression of the written stroke. (If possible, this is what I would want to approximate in Swift/iOS) - (alt link - see animating image on left)
A less good example showing the use of progressive paths and fills to approximate the written stroke characteristics (animation not smooth and requires external resources):
A Flash version - I am familiar with creating Flash animations but I am disinclined to implement these in the 1000's (not too mention that its not supported on iOS, although I could probably also convert an algorithm to leverage an HTML5 canvas with css animation). But this line of thought seems a bit far afield, after all, the path information I want is stored in the glyphs that I've extracted from fonts/strings provided.
Approach 2
I am considering the use of a stroke-based font rather than an outline-based font to obtain the correct path information (i.e. one where fill is represented as a path). If successful, this approach would be cleaner than approximating the strokes, stroke-type, intersections, and stroke order. I've already submitted a radar to Apple suggesting that stroke-based fonts be added to iOS (#20426819). Notwithstanding this effort, I still have not given up on forming an algorithm that resolves partial-strokes, full strokes, intersections, and confluence points from the line-segments and curves found on the bezier path.
Updated Thoughts Based On Discussion/Answers
The following additional information is provided based on any ongoing conversations and answers below.
Stroke order is important and most languages (Chinese in this case) have clearly defined stroke types and stroke order rules that appear to provide a mechanism to determine type and order based on the point information provided with each CGPathElement.
CGPathApply and CGPathApplierFunction appear promising as a means to enumerate the subpaths (saved to an array and apply the fill animation)
A mask may be applied to the layer to reveal a portion of the sublayer
(I have not used this property before but it appears that if I could move a masked layer over the subpaths that might assist in animating the fill?)
There are a large number of points defined for each path. As if the BezierPath is defined using the outline of the glyph only. This fact makes understanding the start, end, and union of crossing fills an important factor to disambiguate specific fills.
Additional external libraries are available that may allow one to better resolve stroke behavior. Other technology like the Saffron Type System or one of its derivatives may be applicable to this problem domain.
A basic issue with the simplest solution of just animating the stroke is that the available iOS fonts are outline fonts rather than stroke-based fonts. Some commercial manufacturers do produce stroke-based fonts. Please feel free to use the link to the playground file if you have one of these for testing.
I think this is a common problem and I will continue to update the post as I move toward a solution. Please let me know in the comments if further information is required or if I might be missing some of the necessary concepts.
Possible Solution
I am always in search of the simplest possible solution. The issue originates from the structure of the fonts being outline fonts rather than stroke-based. I found a sample of a stroke-based font to test and used that to evaluate a proof of concept (see video). I am now in search of an extended single stroke font (which includes Chinese characters) to further evaluate. A less simple solution might be to find a way to create a stroke that follows the fill and then use simple 2D geometry to evaluate which stroke to animate first (For example Chinese rules are very clear on stroke order).
Link to Playground on Github
To use the XPCShowView function: Open the File Navigator and File
Utilities Inspector
Click the playground file and in the FUI (choose
Run in Simulator)
To access the Assistant Editor: Goto menu View > Assistant Editor
To see resources/sources right-click playground file in Finder and Show Package Contents
If Playground is blank on opening, copy the file to the desktop and reopen (bug??)
Playground Code
import CoreText
import Foundation
import UIKit
import QuartzCore
import XCPlayground
//research layers
//var l:CALayer? = nil
//var txt:CATextLayer? = nil
//var r:CAReplicatorLayer? = nil
//var tile:CATiledLayer? = nil
//var trans:CATransformLayer? = nil
//var b:CAAnimation?=nil
// Setup playground to run in full simulator (⌘-0:Select Playground File; ⌘-alt-0:Choose option Run in Full Simulator)
//approach 2 using a custom stroke font requires special font without an outline whose path is the actual fill
var customFontPath = NSBundle.mainBundle().pathForResource("cwTeXFangSong-zhonly", ofType: "ttf")
// Within the playground folder create Resources folder to hold fonts. NB - Sources folder can also be created to hold additional Swift files
//ORTE1LOT.otf
//NISC18030.ttf
//cwTeXFangSong-zhonly
//cwTeXHei-zhonly
//cwTeXKai-zhonly
//cwTeXMing-zhonly
//cwTeXYen-zhonly
var customFontData = NSData(contentsOfFile: customFontPath!) as! CFDataRef
var error:UnsafeMutablePointer<Unmanaged<CFError>?> = nil
var provider:CGDataProviderRef = CGDataProviderCreateWithCFData ( customFontData )
var customFont = CGFontCreateWithDataProvider(provider) as CGFont!
let registered = CTFontManagerRegisterGraphicsFont(customFont, error)
if !registered {
println("Failed to load custom font: ")
}
let string:NSString = "五"
//"ABCDEFGHIJKLMNOPQRSTUVWXYZ一二三四五六七八九十什我是美国人"
//use the Postscript name of the font
let font = CTFontCreateWithName("cwTeXFangSong", 72, nil)
//HiraMinProN-W6
//WeibeiTC-Bold
//OrachTechDemo1Lotf
//XinGothic-Pleco-W4
//GB18030 Bitmap
var count = string.length
//must initialize with buffer to enable assignment within CTFontGetGlyphsForCharacters
var glyphs = Array<CGGlyph>(count: string.length, repeatedValue: 0)
var chars = [UniChar]()
for index in 0..<string.length {
chars.append(string.characterAtIndex(index))
}
//println ("\(chars)") //ok
//println(font)
//println(chars)
//println(chars.count)
//println(glyphs.count)
let gotGlyphs = CTFontGetGlyphsForCharacters(font, &chars, &glyphs, chars.count)
//println(glyphs)
//println(glyphs.count)
if gotGlyphs {
// loop and pass paths to animation function
let cgpath = CTFontCreatePathForGlyph(font, glyphs[0], nil)
//how to break the path apart?
let path = UIBezierPath(CGPath: cgpath)
//path.hashValue
//println(path)
// all shapes are closed paths
// how to distinguish overlapping shapes, confluence points connected by line segments?
// compare curve angles to identify stroke type
// for curves that intersect find confluence points and create separate line segments by adding the linesegmens between the gap areas of the intersection
/* analysis of movepoint
This method implicitly ends the current subpath (if any) and
sets the current point to the value in the point parameter.
When ending the previous subpath, this method does not actually
close the subpath. Therefore, the first and last points of the
previous subpath are not connected to each other.
For many path operations, you must call this method before
issuing any commands that cause a line or curve segment to be
drawn.
*/
//CGPathApplierFunction should allow one to add behavior to each glyph obtained from a string (Swift version??)
// func processPathElement(info:Void, element: CGPathElement?) {
// var pointsForPathElement=[UnsafeMutablePointer<CGPoint>]()
// if let e = element?.points{
// pointsForPathElement.append(e)
//
// }
// }
//
// var pathArray = [CGPathElement]() as! CFMutableArrayRef
//var pathArray = Array<CGPathElement>(count: 4, repeatedValue: 0)
//CGPathApply(<#path: CGPath!#>, <#info: UnsafeMutablePointer<Void>#>, function: CGPathApplierFunction)
// CGPathApply(path.CGPath, info: &pathArray, function:processPathElement)
/*
NSMutableArray *pathElements = [NSMutableArray arrayWithCapacity:1];
// This contains an array of paths, drawn to this current view
CFMutableArrayRef existingPaths = displayingView.pathArray;
CFIndex pathCount = CFArrayGetCount(existingPaths);
for( int i=0; i < pathCount; i++ ) {
CGMutablePathRef pRef = (CGMutablePathRef) CFArrayGetValueAtIndex(existingPaths, i);
CGPathApply(pRef, pathElements, processPathElement);
}
*/
//given the structure
let pathString = path.description
// println(pathString)
//regex patthern matcher to produce subpaths?
//...
//must be simpler method
//...
/*
NOTES:
Use assistant editor to view
UIBezierPath String
http://www.google.com/fonts/earlyaccess
Stroke-based fonts
Donald Knuth
*/
// var redColor = UIColor.redColor()
// redColor.setStroke()
var pathLayer = CAShapeLayer()
pathLayer.frame = CGRect(origin: CGPointZero, size: CGSizeMake(300.0,300.0))
pathLayer.lineJoin = kCALineJoinRound
pathLayer.lineCap = kCALineCapRound
//pathLayer.backgroundColor = UIColor.whiteColor().CGColor
pathLayer.strokeColor = UIColor.redColor().CGColor
pathLayer.path = path.CGPath
// pathLayer.backgroundColor = UIColor.redColor().CGColor
// regarding strokeStart, strokeEnd
/* These values define the subregion of the path used to draw the
* stroked outline. The values must be in the range [0,1] with zero
* representing the start of the path and one the end. Values in
* between zero and one are interpolated linearly along the path
* length. strokeStart defaults to zero and strokeEnd to one. Both are
* animatable. */
var pathAnimation = CABasicAnimation(keyPath: "strokeEnd")
pathAnimation.duration = 10.0
pathAnimation.fromValue = NSNumber(float: 0.0)
pathAnimation.toValue = NSNumber(float: 1.0)
/*
var fillAnimation = CABasicAnimation (keyPath: "fill")
fillAnimation.fromValue = UIColor.blackColor().CGColor
fillAnimation.toValue = UIColor.blueColor().CGColor
fillAnimation.duration = 10.0
pathLayer.addAnimation(fillAnimation, forKey: "fillAnimation") */
//given actual behavior of boundary animation, it is more likely that some other animation will better simulate a written stroke
var someView = UIView(frame: CGRect(origin: CGPointZero, size: CGSizeMake(300.0, 300.0)))
someView.layer.addSublayer(pathLayer)
//SHOW VIEW IN CONSOLE (ASSISTANT EDITOR)
XCPShowView("b4Animation", someView)
pathLayer.addAnimation(pathAnimation, forKey: "strokeEndAnimation")
someView.layer.addSublayer(pathLayer)
XCPShowView("Animation", someView)
}
A couple of concepts in the Apple CAShapeLayer (strokeStart and strokeEnd) really don't seem to operate as expected when animated.
But surely animating the strokeEnd is exactly what you want to do. Use multiple CAShapeLayers over top of one another, each one representing one stroke of the pen to form the desired character shape.
You want to look at CGPathApply (this is the short answer to your more refined question). You supply it with a function and it will call that function for each element (these will be lines and arc and closes) of the path. You can use that to reconstruct each closed item, and stash them into a list. Then you can figure out which direction each item is drawn in (I think this could actually be the hardest part) and rather then using strokeStart/strokeEnd one each subpath draw it in a layer with a mask and move the mask across the layer.
Progress Report
This answer is posted to emphasize the significant progress being made on solving this question. With so much detail added to the question, I just wanted to clarify the progress on the solution and ultimately (when achieved), the definitive answer. Although I did select an answer that was helpful, please consider this post for the complete solution.
Approach # 1
Use existing UIBezierPath information to identify segments of the path (and ultimately) make use of those segments (and their coordinates) to stroke each subpath (according to available language rules).
(Current Thinking)
Erica Sadun is producing a SwiftSlowly repo on Github that supplies many functions on paths, including what appears to be a promising library on Segments (of a UIBezierPath), Line Intersections and many functions to act on these items. I have not had the time to review completely but I can envision that one might deconstruct a given path into segments based on the known stroke types. Once all stroke types are known for a given path, one might then evaluate the relative path coordinates to assign stroke-order. After that simply animate the strokes (a subclass of UIBezierPath) according to their stroke order.
Approach # 2
Use a stroke-based font instead of an outline-based font.
(Current Thinking)
I have found a sample of a stroke-based font and been able to animate the stroke. These fonts come with a built-in stroke order. I do not have access to a completed stroke-based font that also supports Chinese but encourage anyone with knowledge of such a font to reply in comments.
I have made a recommendation to Apple that they supply stroke-based fonts in future releases. The Swift Playground notes and the files (with sample stroke fonts) are included in the question above. Please comment or post an answer if you have something constructive to add to this solution.
Stroke Order Rules
See the stroke order rules as described on the Clear Chinese website.

Core Graphics - My triangle/arc is too pointy

I'm drawing the 'slices' in a custom pie chart in Core Graphics, using a UIBezierPath and the [path addArcWithCenter:radius:startAngle:endAngle:clockwise:] method. My problem is that often the pointy end of the slice actually juts past the center point, intruding into other slices space.
Is there a way to 'round' this edge?
Here is the code im using to draw the path
[path moveToPoint:center];
[path addArcWithCenter:center radius:radius startAngle:interiorAngle endAngle:totalAngle clockwise:YES];
[path addLineToPoint:center];
[path closePath];
Here is an image of the problem:
The white pointy end of the blue piece on the lower left intrudes slightly into the large blue piece in the upper right.
It's not "past" the center point. Your confusion lies in the fact that you're stroking the path. When you stroke a path, the stroke lies centered upon the path, and therefore half of the stroke is outside the path and half of the stroke is inside the path. If you want an accurate stroke, you have two options:
Fill your path with your stroke color, then construct another path that's inset into your first one by the desired line width, and then fill that path with your fill color. This will simulate an "inside" stroke, although it's not usable if your stroke or fill colors are semi-transparent.
Clip to your path, double the stroke width, and then stroke your path. The clipping will force the stroke to only draw inside the path. However, this may not look quite "accurate" at corners (not really sure) since it's doubling the stroke width rather than calculating the "desired" path.
Alternatively, you could try just setting the lineJoinStyle to something other than kCGLineJoinMiter. With the default miter style, the lines actually draw out as far as they need to from the corner in order to meet, which means they can go past 1/2 the line width. If you use kCGLineJoinRound or kCGLineJoineBevel they cannot go past 1/2 the line width. This may not be quite accurate, but it may be good enough for what you want.
I would suspect the problem is with the line width of the white line. For example, a line that is 8 points wide, would have 4 points on either side of the path.
I can't see the problem in that image (which slice is showing it?), but I can suggest that you remove the addLineToPoint: message. It isn't necessary; closePath will return to the center, since that's where you started.

Resources