I am working with two tcl files. One is a program that connects to a thermal scanner to get information from it via ethernet. I have integrated the other tcl GUI that can reflash the scanner via ethernet. How do I use the connection from the first one to use the flash utility on the second GUI? At first, the two GUI's were separate but I had to combine them for customers.
-let me know if you need any code, the programs are about 4000 lines long so I didnt want to put them on here.
A single TCP connection can only really be used by one process (at each end) at a time; trying to do otherwise causes confusion. Can you just get each program to talk to the thermal scanner directly? At least theoretically, it ought be able to support multiple simultaneous connections, and that'd be a simple way to work.
But if the device won't work that way, the easiest way to multiplex the communications is to have a single process that actually talks to the device and for the other programs to talk to that multiplexer process (probably via a local socket). The multiplexer doesn't need to have a GUI, but would be told to do things like “flash this file to the scanner” or “stream values out of the scanner”. The details of how to do all this will depend very much on what's actually going on with the communications, but the fcopy command is highly likely to be useful in this, as it can be used to efficiently stream data from one Tcl channel to another.
Related
Is there a simple way to implement communication between two computers running GNUradio using the standard blocks set?
What I am have now is this:
On a Linux computer, GNUradio is running and receiving input from a Radio peripheral. On that computer I can see the received waveform on a WX scope. I can also use sliders and input boxes to change things like the receiver frequency.
What I'd like to do is this:
On a Windows computer, I have the WX scope and sliders. When I move the a slider or change an input box, that data gets sent to the Linux, which is still running the radio receiver on Gnuradio. The received signal goes through a stream back to the windows, and gets displayed on the WX scope on Windows.
Someone elsewhere suggested using the ZMQ blocks, however, when I tried setting up a PUSH/PULL to transmit a sine wave from the Linux to the Windows, nothing went through. The guy who recommended that approach tried the same and also could not get it working, so I think that block might be broken?
So is there any alternative blocks that can do what I'm trying to do? Preferably something well documented, and available on GNUradio-companion.
Depending on the data rate from the receiver, it's possible to encounter performance issues attempting to send raw waveform data using e.g. the UDP blocks, where the sender may print an error similar to the following:
gr::log :WARN: udp_source0 - Too much data; dropping packet.
Because the scope widgets usually only display a portion of the input data, a more ideal way of remotely visualizing the waveform might be to only send the rendered scope widget (e.g. using a remote desktop such as VNC or X2Go). Although this solution reaches beyond your original problem, it is probably easier to use in the long run for cases involving two-way GUI interaction.
For the scope widget data, the UDP sink and source blocks seem to be native to GNU Radio, and are either sufficiently documented solution or simple enough for this problem, again taking firewall configuration into consideration as #Zephyr mentioned.
From GRC, specify in the UDP blocks:
the hostname or IP address of the display computer, and
a choose port number that isn't already in use (and were you using Linux, OS X, or anything UNIX-like, not any port below 1024).
For setting variables over the network, you might try the XMLRPC blocks, as described in another answer. These were recently deprecated, however.
See my other answer for discussion of alternative if performance issues arise.
Both Linux and Windows should have firewalls which might be blocking the connections.
You need to post the error messages displayed in gnuradio-companion.
I have a Go program that starts a C/Lua process. Now I'd like to communicate between those two. For example, in the middle of the run of the child (the c/lua process), I'd like to ask the parent (the Go program) to do some calculations and wait for the result. I am not keen to use stdin/stdout for communication, as this is already used for regular output. Now I am thinking of using sockets for the communication, but I don't want to reinvent the wheel.
What are the obvious choices for this kind of communication?
Is there a (more or less) simple standard way to pass objects between Lua and Go? If not, text blobs would suffice.
Are Protocol Buffers suitable for this? Looks like overkill, but I have no experience here.
Besides all the usual IPC methods you've mentioned (yeah, a unix socket with protobuf should do it, and stdin/stdout as well), if you run the C/Lua code embedded in your program, and not start it as a process, you can actually communicate between the languages directly.
Using the cgo module, Go code can call C functions, and embedded C code can call Go functions. See here: http://golang.org/cmd/cgo/#hdr-C_references_to_Go
Also, you have a couple embeddable Lua binding libraries for Go which you can try, that let you call Lua code and let your Lua code call Go. see https://github.com/aarzilli/golua and https://github.com/stevedonovan/luar/
I now talk to the subprocess via regular tcp sockets. The child process (Lua) has luasocket built in and this seems to work on Windows, Mac and Linux without problems.
Also, I have (for now) defined my own very simple protocol which looks OK in the first steps.
Just in case anybody is interested: https://github.com/speedata/publisher/commit/ea253382c1096274bca2d4124867c39cd0d512e5 and the child commits implement the tcp connection.
I want to be able to show (by device) open/blocked status for a given protocol between two devices/ports on a network. In other words, I need to output a list of network devices (firewalls & switches) between Server A and Server B and indicate whether the request should (according to each device's rules) be allowed through or blocked.
I'm starting with the Cisco networking devices, which are centrally managed by Cisco's Security Manager (CSM) application (version 4.2). I'm new to network management automation programming and want to make sure I'm not overlooking an obvious best way to handle this.
So far it's looking like I'll need to periodically export and ETL device rules out of CSM (they have a perl script that I can call to do this I believe) and into a separate database, then write some custom SQL code to determine which devices on a route between two hosts/ports will allow or block traffic of the given protocol?
Am I on the right track, or is there a better way to go about this?
If I understood your question, I think you can run a TCL script inside the Cisco equipments do collect the necessary information and transfer it to a central server, form there import it to a database and then correlate that information.
Hope that helps you in your work.
I have a server application that receives some special TCP packet from a client and needs to react to it as soon as possible by sending an high-level ACK to the client (the TCP ACK won't suite my needs).
However, this server is really network intensive and sometimes the packet will take too long to be sent (like 200ms in a local network, when a simple server application can send it in less than 1ms).
Is there a way to mark this packet with a high-priority tag or something like that in Delphi? Or maybe with the Win32 API?
Thanks in advance.
EDIT
Thanks for all the answers so far. I'll add some details. My product has the following setup: there are several devices that are built upon vehicles with WIFI conectivity. When they arrive at the garage, those device connect to my server and start to transmit data.
Because of hardware limitations, I implemented a high-level ACK to make the device aware that the last packet arrived successfully (please, don't argue about this - the data may be broken even if I got a correct TCP ACK). However, if I use my server software, that communicates with a remote database, to issue this ACK, I get very long delay (>200ms). If I use an exclusive software to do this task, I get small latencies (<1ms). So, I was imagining if I could just tell Windows to send those special packets first, as it seems to me that this package is getting delayed so the database ones can get delivered.
That's the motivation behind my question.
EDIT 2
As requested: this is legacy software and I'm using the legacy dclsockets140.bpl package and Delphi 2010 (14.0.3593.25826).
IMO it is very difficult to realize this. there are a lot of equipment and software involved. first of all, if you communicate between 2 different OS's you got a latency. second, soft and hard firewalls, antiviruses, everything is filtering/delaying your package.
you can try also to 'hack' the system(this involve some very good knowledge on how the frames/segments are packed/send,flow control,congestion,etc), either by altering it from code, either by using some tools like http://half-open.com/ or others.
In short, passing MSG_OOB flag to the send function marks the data as "urgent". Detailed discussion about the OOB in the context of Windows Sockets implementation specifics is available here.
I need to run an equipment audit and to do that I need to obtain the Windows PC, monitor etc. serial numbers.
So I faced with going to each PC and manually writing down the numbers.
Is there a way I can get this programmatically so each user can run a small program and email me the results?
If this information is anywhere, it'd be in WMI (http://en.wikipedia.org/wiki/Windows_Management_Instrumentation) - you could write a VBscript script to query this information and save it to a remote share on a server for example.
Generally no. If your computers are all Dell, though, you might be able to get some information (maybe the serial number?) for the PC itself.
The monitor, if it supports VESA EDID (DDC, EDID, EEDID), may also include a 32 bit serial number - which may or may not have any relation to the serial number printed on the monitor's label. You may be able to access this through the display driver - Windows has access to portions of it (to display monitor resolution and timing) so I expect the manufacturer/model/serial number is stashed somewhere as well.
However, making such a program that would work across all systems and monitors would likely be much more work than simply going to each station and recording it, unless all the systems have the same hardware.
Good luck!
-Adam
I am not quite sure if this is exactly what you want, but there is pay software made by DameWare that allows you to easily remote connect to other machines and get lots of information. I haven't used it much yet, but I think there is a way to make batch scripts so it can go pull information like that for you, or see what apps are installed on the machines. Even worse case though, you don't have to run to each machine. (I am assuming you mean SN like the MS product ID)
WMI is definitely the way to go. You can get quite a bit of useful audit information through that API.
Michael Baird appears to have written a VBS script to read the EDID information. The script reads and parses the monitor EDID information from the registry in order to retrieve asset information.
http://cwashington.netreach.net/depo/view.asp?Index=980&ScriptType=vbscript