What does 'return from subroutine' mean? - stack

I'm trying to build my first ever CHIP-8 emulator from scratch using C. While writing necessary code for the instructions, I came across this opcode:
00EE - RET
Return from a subroutine.
The interpreter sets the program counter to the address at the top of the stack, then subtracts 1 from the stack pointer.
(http://devernay.free.fr/hacks/chip8/C8TECH10.HTM)
I know that a subroutine is basically a function, but what does it mean to 'return' from a subroutine? And what is happening to the program counter, stack, and the stack pointer respectively?
(One additional question): If I created an array that can hold 16 values to represent the stack, will the 'top of the stack' be STACK[0] or STACK[15]? And where should my stack pointer be?

To return from a subroutine is to return code execution to the point it was at before the subroutine was called.
Therefore, given that calling a subroutine pushes the current address PC+2 (+2 to jump past the call instruction) onto the stack. Returning from a subroutine will return execution to the address that was pushed to the stack by popping the address from the stack. (e.g. pc=stack[sp]; sp-=2;)
As for the additional question, it really depends on whether you define your stack as being ascending or descending. For the CHIP-8 the choice is not specified.

Related

Understanding how call return works

I am somewhat confused regarding exactly when the context of a called function gets deleted. I have read that the stackframe of the called function is popped off when it returns. I am trying to apply that knowledge to the following scenario where function foo calls function bar, which return a structure. The code could look something like this:
//...
struct Bill
{
float amount;
int id;
char address[100];
};
//...
Bill bar(int);
//...
void foo() {
// ...
Bill billRecord = bar(56);
//...
}
Bill bar(int i) {
//...
Bill bill = {123.56, 2347890, "123 Main Street"};
//...
return bill;
}
The memory for bill object in the function bar is from the stackframe of bar, which is popped off when bar returns. It appears to be still valid when the assignment of the returned structure is made to billRecord in foo.
So does it mean that the stackframe for bar is not deleted the instant it returns but only after the value returned by bar is used in foo?
You're right, there's this "hole" between when bar returns and foo copies the return value somewhere with an assignment operation. The way this works is that there is notionally some 'return value' space where the return value lives while being returned. So from the execution model, there are two copies of the return value -- from the local in bar to the return space and from the return space to billRecord in foo.
Exactly how this works depends on the calling conventions. On x86_64, the "return value space" is in registers for small return values and in some memory controlled by the caller for larger return values. If the return value is larger than two registers worth, then the caller must pass a 'hidden' extra argument with a pointer to the space where the return value should be stored. bar will then copy its local variable into that space before deleting its stack frame and returning.
So when compiling foo the compiler knows it needs to provide that extra hidden argument and knows it needs to allocate some space for it. If it is smart (and you enable optimization) it will simply re-use the space for billRecord for this (passing a pointer to billRecord as the hidden argument), and the assignment in foo will then be a noop (as it knows bar will do all the work)1`.
If the compiler is smart when compiling bar it might do "return value optimization" and, realizing it is just going to return the local variable bill, allocate that local var in the return value space it got from its caller, rather than in its own stack frame.
1Of course, it can only do this if it knows there's no way for bar to access billRecord directly. This requires what is known as "escape analysis" -- if the location of billRecord "escapes" from foo (for example, by taking its address and storing it somewhere or passing it as an argument somewhere), this optimization can't be done and it will need to allocate additional space in its stack frame for the return space in addition to that used by billRecord
The stack frame is "deleted" right before the function returns. Usually the return value is stored from the stack into a register and then the function returns. Let's look under the hood a bit to see what's really going on. I'm going to omit the actual disassembly of your code since it's a bit overwhelming, but I'll summarize the key points here. Typically a function written in C does the following (I'm using x86 Assembly as an example, the process is similar on other architectures but the register names will be different)
First, to use a function, it must be CALLed.
CALL bar
Doing so pushes the contents of the rip register on the stack (which can be thought of as representing "what line of code we're going to run next.")
bar:
push rbp
mov rbp,rsp
Most functions written by a C compiler start out like this. The purpose of this is to create a stack frame. The contents of rbp are stored on the stack for safekeeping. Then, we copy the value of the stack pointer (rsp) to rbp. The reason C does this is simple: rsp can be altered by certain instructions such as push,pop,call, and ret, where rbp is not. In addition, the free space above the stack that hasn't been used yet can be used by the calling function.
Next, our local variables are stored onto the stack. One of them was the 56 we passed to bar. C chose to store the value 56 into the esi register prior to calling the function.
mov DWORD PTR [rbp-12], esi
This basically means "take the contents of the esi register and store them 12 bytes before the address pointed to by rbp. This is guaranteed to be free space, thanks to the push rbp mov rbp,rsp sequence from earlier.
Once the function does what it needs to do, the return value is stored in rax and then we do the exit sequence.
pop rbp
ret
As for the stack frame, it wasn't actually "deleted" per se. Those values are temporarily still there until they are overwritten by another function. However, for all intents and purposes, they are considered deleted, as that stack space is now considered "free" and can be used by anything (such as hardware interrupts etc.) Therefore, after a function returns, there is no guarantee that any of its local values are still there if you try to access them. (Not that C would let you access them without inline assembly, but what I'm saying is you shouldn't even try.)

How does Assembly Work with Stack Correctly

I always have a question about how to calculate the stretch of the stack. For example, when I have more than 8 parameters in arm64, he actually uses the area of my previous function call stack. After BL enters the function, he uses SP to add back to get the parameters, which is equivalent to crossing a stack. How can he avoid polluting the previous stack in this case? Thank you for your answer
You are correct: the function arguments which do not fit in registers will be pushed onto the stack before calling your function. Therefore, they will be at addresses with positive offsets from SP on entry to your function, and I can see why you might be concerned that it is not safe to access this memory. However, this memory is in fact "yours".
The ARM Procedure Call Standard section 6.4.2 states "A callee is permitted to modify any stack space used for receiving parameter values from the caller". So, there is no need to worry. The caller is expecting you to access this memory, and even to modify it if you want, and nothing will break if you do.

How does cpu obtain return address from stack

How does cpu obtains return address from stack which is pushed by caller function. how he know it is a return address not anything else?
I had to look it up, but it's sufficiently explained on Wikipedia
So the callee (called subroutine) itself is responsible to pop everything from the stack (own local variables) and to perform the jump to the return address which the caller function provided.
The return address is e.g. the very stack entry after local variables from the callee have been popped (at least in the Wikipedia example - there may be differences on different architectures).
The frame pointer would be a hint for the location to the return address, but can be omitted for performance, so you can't rely on that.
I don't know whether the callee is responsible to remove the parameters which were passed from caller - this may be architecture dependent.
Update: an assembly example
At the end of a function (callee), variables that got saved on the stack (i.e. some register values and the return address to the caller) are popped back into the corresponding registers:
pop {r4, r5, r6, pc}
On ARM, this gets the four next words on the stack into those registers.
One is the return address which is popped into $PC (program counter).
Thus the execution continues with the instruction at the return address which is popped into $PC.
I can't exactly say how the link register is working. It's supposed to contain a return address (but for nested function calls of course we still need the stack to store several return addresses).

Reading from a stack and memory allocation at compile time

Objects can be put on and removed only from the top of a stack. But what about reading and writing their values? Please correct me if I'm wrong, but I think process must be able to read from any part of the stack, since if only reading from the top was possible it would have to remove (and store somewhere) whole content of the stack above a variable it wants to examine. But in that case, how does the process know where exactly in the stack is a particular variable? I suspect it just holds a pointer to it, but where is that pointer stored?
Another thing - reading about stacks I often find phrases like "All memory allocated on the stack is known at compile time." Well, I probably misunderstand this, so please tell me where's the flaw in my logic:
Suppose a local variable is created when an if() statement is true, and isn't when it's false. Whether it's true will turn out at run time. So at compile time there's no way to know if it should be created, hence I wouldn't think memory for it is allocated at all, as it would be wasteful. Consequently, it isn't created/known at compile time.
At compile time, it's known how much space each type needs: An Integer, for instance, is 4 Bytes wide on 32 bit platforms, and a class with 2 Integers consumes 8 Bytes. Whether this space is allocated for a specific variable is not necessarily known (may depend on an if, as you stated).
When you invoke a method, all parameters and the return address are pushed onto the stack. To get one parameter, you walk up the stack up to its position, which is computed by the base pointer and the size of each parameter.
So it is not entirely true for this stack that you can access the top element only. It is, however, for the Stack data structure.

How does a "stack overflow" occur and how do you prevent it?

How does a stack overflow occur and what are the ways to make sure it doesn't happen, or ways to prevent one?
Stack
A stack, in this context, is the last in, first out buffer you place data while your program runs. Last in, first out (LIFO) means that the last thing you put in is always the first thing you get back out - if you push 2 items on the stack, 'A' and then 'B', then the first thing you pop off the stack will be 'B', and the next thing is 'A'.
When you call a function in your code, the next instruction after the function call is stored on the stack, and any storage space that might be overwritten by the function call. The function you call might use up more stack for its own local variables. When it's done, it frees up the local variable stack space it used, then returns to the previous function.
Stack overflow
A stack overflow is when you've used up more memory for the stack than your program was supposed to use. In embedded systems you might only have 256 bytes for the stack, and if each function takes up 32 bytes then you can only have function calls 8 deep - function 1 calls function 2 who calls function 3 who calls function 4 .... who calls function 8 who calls function 9, but function 9 overwrites memory outside the stack. This might overwrite memory, code, etc.
Many programmers make this mistake by calling function A that then calls function B, that then calls function C, that then calls function A. It might work most of the time, but just once the wrong input will cause it to go in that circle forever until the computer recognizes that the stack is overblown.
Recursive functions are also a cause for this, but if you're writing recursively (ie, your function calls itself) then you need to be aware of this and use static/global variables to prevent infinite recursion.
Generally, the OS and the programming language you're using manage the stack, and it's out of your hands. You should look at your call graph (a tree structure that shows from your main what each function calls) to see how deep your function calls go, and to detect cycles and recursion that are not intended. Intentional cycles and recursion need to be artificially checked to error out if they call each other too many times.
Beyond good programming practices, static and dynamic testing, there's not much you can do on these high level systems.
Embedded systems
In the embedded world, especially in high reliability code (automotive, aircraft, space) you do extensive code reviews and checking, but you also do the following:
Disallow recursion and cycles - enforced by policy and testing
Keep code and stack far apart (code in flash, stack in RAM, and never the twain shall meet)
Place guard bands around the stack - empty area of memory that you fill with a magic number (usually a software interrupt instruction, but there are many options here), and hundreds or thousands of times a second you look at the guard bands to make sure they haven't been overwritten.
Use memory protection (ie, no execute on the stack, no read or write just outside the stack)
Interrupts don't call secondary functions - they set flags, copy data, and let the application take care of processing it (otherwise you might get 8 deep in your function call tree, have an interrupt, and then go out another few functions inside the interrupt, causing the blowout). You have several call trees - one for the main processes, and one for each interrupt. If your interrupts can interrupt each other... well, there be dragons...
High-level languages and systems
But in high level languages run on operating systems:
Reduce your local variable storage (local variables are stored on the stack - although compilers are pretty smart about this and will sometimes put big locals on the heap if your call tree is shallow)
Avoid or strictly limit recursion
Don't break your programs up too far into smaller and smaller functions - even without counting local variables each function call consumes as much as 64 bytes on the stack (32 bit processor, saving half the CPU registers, flags, etc)
Keep your call tree shallow (similar to the above statement)
Web servers
It depends on the 'sandbox' you have whether you can control or even see the stack. Chances are good you can treat web servers as you would any other high level language and operating system - it's largely out of your hands, but check the language and server stack you're using. It is possible to blow the stack on your SQL server, for instance.
A stack overflow in real code occurs very rarely. Most situations in which it occurs are recursions where the termination has been forgotten. It might however rarely occur in highly nested structures, e.g. particularly large XML documents. The only real help here is to refactor the code to use an explicit stack object instead of the call stack.
Most people will tell you that a stack overflow occurs with recursion without an exit path - while mostly true, if you work with big enough data structures, even a proper recursion exit path won't help you.
Some options in this case:
Breadth-first search
Tail recursion, .Net-specific great blog post (sorry, 32-bit .Net)
Infinite recursion is a common way to get a stack overflow error. To prevent - always make sure there's an exit path that will be hit. :-)
Another way to get a stack overflow (in C/C++, at least) is to declare some enormous variable on the stack.
char hugeArray[100000000];
That'll do it.
Aside from the form of stack overflow that you get from a direct recursion (eg Fibonacci(1000000)), a more subtle form of it that I have experienced many times is an indirect recursion, where a function calls another function, which calls another, and then one of those functions calls the first one again.
This can commonly occur in functions that are called in response to events but which themselves may generate new events, for example:
void WindowSizeChanged(Size& newsize) {
// override window size to constrain width
newSize.width=200;
ResizeWindow(newSize);
}
In this case the call to ResizeWindow may cause the WindowSizeChanged() callback to be triggered again, which calls ResizeWindow again, until you run out of stack. In situations like these you often need to defer responding to the event until the stack frame has returned, eg by posting a message.
Usually a stack overflow is the result of an infinite recursive call (given the usual amount of memory in standard computers nowadays).
When you make a call to a method, function or procedure the "standard" way or making the call consists on:
Pushing the return direction for the call into the stack(that's the next sentence after the call)
Usually the space for the return value get reserved into the stack
Pushing each parameter into the stack (the order diverges and depends on each compiler, also some of them are sometimes stored on the CPU registers for performance improvements)
Making the actual call.
So, usually this takes a few bytes depeding on the number and type of the parameters as well as the machine architecture.
You'll see then that if you start making recursive calls the stack will begin to grow. Now, stack is usually reserved in memory in such a way that it grows in opposite direction to the heap so, given a big number of calls without "coming back" the stack begins to get full.
Now, on older times stack overflow could occur simply because you exausted all available memory, just like that. With the virtual memory model (up to 4GB on a X86 system) that was out of the scope so usually, if you get an stack overflow error, look for an infinite recursive call.
I have recreated the stack overflow issue while getting a most common Fibonacci number i.e. 1, 1, 2, 3, 5..... so calculation for fib(1) = 1 or fib(3) = 2.. fib(n) = ??.
for n, let say we will interested - what if n = 100,000 then what will be the corresponding Fibonacci number ??
The one loop approach is as below -
package com.company.dynamicProgramming;
import java.math.BigInteger;
public class FibonacciByBigDecimal {
public static void main(String ...args) {
int n = 100000;
BigInteger[] fibOfnS = new BigInteger[n + 1];
System.out.println("fibonacci of "+ n + " is : " + fibByLoop(n));
}
static BigInteger fibByLoop(int n){
if(n==1 || n==2 ){
return BigInteger.ONE;
}
BigInteger fib = BigInteger.ONE;
BigInteger fip = BigInteger.ONE;
for (int i = 3; i <= n; i++){
BigInteger p = fib;
fib = fib.add(fip);
fip = p;
}
return fib;
}
}
this quite straight forward and result is -
fibonacci of 100000 is : 2597406934722172416615503402127591541488048538651769658472477070395253454351127368626555677283671674475463758722307443211163839947387509103096569738218830449305228763853133492135302679278956701051276578271635608073050532200243233114383986516137827238124777453778337299916214634050054669860390862750996639366409211890125271960172105060300350586894028558103675117658251368377438684936413457338834365158775425371912410500332195991330062204363035213756525421823998690848556374080179251761629391754963458558616300762819916081109836526352995440694284206571046044903805647136346033000520852277707554446794723709030979019014860432846819857961015951001850608264919234587313399150133919932363102301864172536477136266475080133982431231703431452964181790051187957316766834979901682011849907756686456845066287392485603914047605199550066288826345877189410680370091879365001733011710028310473947456256091444932821374855573864080579813028266640270354294412104919995803131876805899186513425175959911520563155337703996941035518275274919959802257507902037798103089922984996304496255814045517000250299764322193462165366210841876745428298261398234478366581588040819003307382939500082132009374715485131027220817305432264866949630987914714362925554252624043999615326979876807510646819068792118299167964409178271868561702918102212679267401362650499784968843680975254700131004574186406448299485872551744746695651879126916993244564817673322257149314967763345846623830333820239702436859478287641875788572910710133700300094229333597292779191409212804901545976262791057055248158884051779418192905216769576608748815567860128818354354292307397810154785701328438612728620176653953444993001980062953893698550072328665131718113588661353747268458543254898113717660519461693791688442534259478126310388952047956594380715301911253964847112638900713362856910155145342332944128435722099628674611942095166100230974070996553190050815866991144544264788287264284501725332048648319457892039984893823636745618220375097348566847433887249049337031633826571760729778891798913667325190623247118037280173921572390822769228077292456662750538337500692607721059361942126892030256744356537800831830637593334502350256972906515285327194367756015666039916404882563967693079290502951488693413799125174856667074717514938979038653338139534684837808612673755438382110844897653836848318258836339917310455850905663846202501463131183108742907729262215943020429159474030610183981685506695026197376150857176119947587572212987205312060791864980361596092339594104118635168854883911918517906151156275293615849000872150192226511785315089251027528045151238603792184692121533829287136924321527332714157478829590260157195485316444794546750285840236000238344790520345108033282013803880708980734832620122795263360677366987578332625485944906021917368867786241120562109836985019729017715780112040458649153935115783499546100636635745448508241888279067531359950519206222976015376529797308588164873117308237059828489404487403932053592935976454165560795472477862029969232956138971989467942218727360512336559521133108778758228879597580320459608479024506385194174312616377510459921102486879496341706862092908893068525234805692599833377510390101316617812305114571932706629167125446512151746802548190358351688971707570677865618800822034683632101813026232996027599403579997774046244952114531588370357904483293150007246173417355805567832153454341170020258560809166294198637401514569572272836921963229511187762530753402594781448204657460288485500062806934811398276016855584079542162057543557291510641537592939022884356120792643705560062367986544382464373946972471945996555795505838034825597839682776084731530251788951718630722761103630509360074262261717363058613291544024695432904616258691774630578507674937487992329181750163484068813465534370997589353607405172909412697657593295156818624747127636468836551757018353417274662607306510451195762866349922848678780591085118985653555434958761664016447588028633629704046289097067736256584300235314749461233912068632146637087844699210427541569410912246568571204717241133378489816764096924981633421176857150311671040068175303192115415611958042570658693127276213710697472226029655524611053715554532499750843275200199214301910505362996007042963297805103066650638786268157658772683745128976850796366371059380911225428835839194121154773759981301921650952140133306070987313732926518169226845063443954056729812031546392324981793780469103793422169495229100793029949237507299325063050942813902793084134473061411643355614764093104425918481363930542369378976520526456347648318272633371512112030629233889286487949209737847861884868260804647319539200840398308008803869049557419756219293922110825766397681361044490024720948340326796768837621396744075713887292863079821849314343879778088737958896840946143415927131757836511457828935581859902923534388888846587452130838137779443636119762839036894595760120316502279857901545344747352706972851454599861422902737291131463782045516225447535356773622793648545035710208644541208984235038908770223039849380214734809687433336225449150117411751570704561050895274000206380497967960402617818664481248547269630823473377245543390519841308769781276565916764229022948181763075710255793365008152286383634493138089971785087070863632205869018938377766063006066757732427272929247421295265000706646722730009956124191409138984675224955790729398495608750456694217771551107346630456603944136235888443676215273928597072287937355966723924613827468703217858459948257514745406436460997059316120596841560473234396652457231650317792833860590388360417691428732735703986803342604670071717363573091122981306903286137122597937096605775172964528263757434075792282180744352908669606854021718597891166333863858589736209114248432178645039479195424208191626088571069110433994801473013100869848866430721216762473119618190737820766582968280796079482259549036328266578006994856825300536436674822534603705134503603152154296943991866236857638062351209884448741138600171173647632126029961408561925599707566827866778732377419444462275399909291044697716476151118672327238679208133367306181944849396607123345271856520253643621964198782752978813060080313141817069314468221189275784978281094367751540710106350553798003842219045508482239386993296926659221112742698133062300073465628498093636693049446801628553712633412620378491919498600097200836727876650786886306933418995225768314390832484886340318940194161036979843833346608676709431643653538430912157815543512852077720858098902099586449602479491970687230765687109234380719509824814473157813780080639358418756655098501321882852840184981407690738507369535377711880388528935347600930338598691608289335421147722936561907276264603726027239320991187820407067412272258120766729040071924237930330972132364184093956102995971291799828290009539147382437802779051112030954582532888721146170133440385939654047806199333224547317803407340902512130217279595753863158148810392952475410943880555098382627633127606718126171022011356181800775400227516734144169216424973175621363128588281978005788832454534581522434937268133433997710512532081478345067139835038332901313945986481820272322043341930929011907832896569222878337497354301561722829115627329468814853281922100752373626827643152685735493223028018101449649009015529248638338885664893002250974343601200814365153625369199446709711126951966725780061891215440222487564601554632812091945824653557432047644212650790655208208337976071465127508320487165271577472325887275761128357592132553934446289433258105028633583669291828566894736223508250294964065798630809614341696830467595174355313224362664207197608459024263017473392225291248366316428006552870975051997504913009859468071013602336440164400179188610853230764991714372054467823597211760465153200163085336319351589645890681722372812310320271897917951272799656053694032111242846590994556380215461316106267521633805664394318881268199494005537068697621855231858921100963441012933535733918459668197539834284696822889460076352031688922002021931318369757556962061115774305826305535862015637891246031220672933992617378379625150999935403648731423208873977968908908369996292995391977217796533421249291978383751460062054967341662833487341011097770535898066498136011395571584328308713940582535274056081011503907941688079197212933148303072638678631411038443128215994936824342998188719768637604496342597524256886188688978980888315865076262604856465004322896856149255063968811404400429503894245872382233543101078691517328333604779262727765686076177705616874050257743749983775830143856135427273838589774133526949165483929721519554793578923866762502745370104660909382449626626935321303744538892479216161188889702077910448563199514826630802879549546453583866307344423753319712279158861707289652090149848305435983200771326653407290662016775706409690183771201306823245333477966660525325490873601961480378241566071271650383582257289215708209369510995890132859490724306183325755201208090007175022022949742801823445413711916298449914722254196594682221468260644961839254249670903104007581488857971672246322887016438403908463856731164308169537326790303114583680575021119639905615169154708510459700542098571797318015564741406172334145847111268547929892443001391468289103679179216978616582489007322033591376706527676521307143985302760988478056216994659655461379174985659739227379416726495377801992098355427866179123126699374730777730569324430166839333011554515542656864937492128687049121754245967831132969248492466744261999033972825674873460201150442228780466124320183016108232183908654771042398228531316559685688005226571474428823317539456543881928624432662503345388199590085105211383124491861802624432195540433985722841341254409411771722156867086291742124053110620522842986199273629406208834754853645128123279609097213953775360023076765694208219943034648783348544492713539450224591334374664937701655605763384697062918725745426505879414630176639760457474311081556747091652708748125267159913793240527304613693961169892589808311906322510777928562071999459487700611801002296132304588294558440952496611158342804908643860880796440557763691857743754025896855927252514563404385217825890599553954627451385454452916761042969267970893580056234501918571489030418495767400819359973218711957496357095967825171096264752068890806407651445893132870767454169607107931692704285168093413311046353506242209810363216771910420786162184213763938194625697286781413636389620123976910465418956806197323148414224550071617215851321302030684176087215892702098879108938081045903397276547326416916845445627600759561367103584575649094430692452532085003091068783157561519847567569191284784654692558665111557913461272425336083635131342183905177154511228464455136016013513228948543271504760839307556100908786096663870612278690274831819331606701484957163004705262228238406266818448788374548131994380387613830128859885264201992286188208499588640888521352501457615396482647451025902530743172956899636499615707551855837165935367125448515089362904567736630035562457374779100987992499146967224041481601289530944015488942613783140087804311431741858071826185149051138744831358439067228949408258286021650288927228387426432786168690381960530155894459451808735197246008221529343980828254126128257157209350985382800738560472910941184006084485235377833503306861977724501886364070344973366473100602018128792886991861824418453968994777259482169137133647470453172979809245844361129618997595696240971845564020511432589591844724920942930301651488713079802102379065536525154780298059407529440513145807551537794861635879901158192019808879694967187448224156836463534326160242632934761634458163890163805123894184523973421841496889262398489648642093409816681494771155177009562669029850101513537599801272501241971119871526593747484778935488777815192931171431167444773882941064615028751327709474504763922874890662989841540259350834035142035136168819248238998027706666916342133424312054507359388616687691188185776118135771332483965209882085982391298606386822804754362408956522921410859852037330544625953261340234864689275060526893755148403298542086991221052597005628576707702567695300978970046408920009852106980295419699802138053295798159478289934443245491565327845223840551240445208226435420656313310702940722371552770504263482073984454889589248861397657079145414427653584572951329719091947694411910966797474262675590953832039169673494261360032263077428684105040061351052194413778158095005714526846009810352109249040027958050736436961021241137739717164869525493114805040126568351268829598413983222676377804500626507241731757395219796890754825199329259649801627068665658030178877405615167159731927320479376247375505855052839660294566992522173600874081212014209071041937598571721431338017425141582491824710905084715977249417049320254165239323233258851588893337097136310892571531417761978326033750109026284066415801371359356529278088456305951770081443994114674291850360748852366654744869928083230516815711602911836374147958492100860528981469547750812338896943152861021202736747049903930417035171342126923486700566627506229058636911882228903170510305406882096970875545329369434063981297696478031825451642178347347716471058423238594580183052756213910186997604305844068665712346869679456044155742100039179758348979935882751881524675930878928159243492197545387668305684668420775409821781247053354523194797398953320175988640281058825557698004397120538312459428957377696001857497335249965013509368925958021863811725906506436882127156815751021712900765992750370228283963962915973251173418586721023497317765969454283625519371556009143680329311962842546628403142444370648432390374906410811300792848955767243481200090309888457270907750873638873299642555050473812528975962934822878917619920725138309388288292510416837622758204081918933603653875284116785703720989718832986921927816629675844580174911809119663048187434155067790863948831489241504300476704527971283482211522202837062857314244107823792513645086677566622804977211397140621664116324756784216612961477109018826094677377686406176721484293894976671380122788941309026553511096118347012565197540807095384060916863936906673786627209429434264260402902158317345003727462588992622049877121178405563348492490326003508569099382392777297498413565614830788262363322368380709822346012274241379036473451735925215754757160934270935192901723954921426490691115271523338109124042812102893738488167358953934508930697715522989199698903885883275409044300321986834003470271220020159699371690650330547577095398748580670024491045504890061727189168031394528036165633941571334637222550477547460756055024108764382121688848916940371258901948490685379722244562009483819491532724502276218589169507405794983759821006604481996519360110261576947176202571702048684914616894068404140833587562118319210838005632144562018941505945780025318747471911604840677997765414830622179069330853875129298983009580277554145435058768984944179136535891620098725222049055183554603706533183176716110738009786625247488691476077664470147193074476302411660335671765564874440577990531996271632972009109449249216456030618827772947750764777446452586328919159107444252320082918209518021083700353881330983215894608680127954224752071924134648334963915094813097541433244209299930751481077919002346128122330161799429930618800533414550633932139339646861616416955220216447995417243171165744471364197733204899365074767844149929548073025856442942381787641506492878361767978677158510784235702640213388018875601989234056868423215585628508645525258377010620532224244987990625263484010774322488172558602233302076399933854152015343847725442917895130637050320444917797752370871958277976799686113626532291118629631164685159934660693460557545956063155830033697634000276685151293843638886090828376141157732003527565158745906567025439437931104838571313294490604926582363108949535090082673154497226396648088618041573977888472892174618974189721700770009862449653759012727015227634510874906948012210684952063002519011655963580552429180205586904259685261047412834518466736938580027700252965356366721619883672428226933950325930390994583168665542234654857020875504617520521853721567282679903418135520602999895366470106557900532129541336924472492212436324523042895188461779122338069674233980694887270587503389228395095135209123109258159006960395156367736067109050566299603571876423247920752836160805597697778756476767210521222327184821484446631261487584226092608875764331731023263768864822594691211032367737558122133470556805958008310127481673962019583598023967414489867276845869819376783757167936723213081586191045995058970991064686919463448038574143829629547131372173669836184558144505748676124322451519943362182916191468026091121793001864788050061351603144350076189213441602488091741051232290357179205497927970924502479940842696158818442616163780044759478212240873204124421169199805572649118243661921835714762891425805771871743688000324113008704819373962295017143090098476927237498875938639942530595331607891618810863505982444578942799346514915952884869757488025823353571677864826828051140885429732788197765736966005727700162592404301688659946862983717270595809808730901820120931003430058796552694788049809205484305467611034654748067290674399763612592434637719995843862812391985470202414880076880818848087892391591369463293113276849329777201646641727587259122354784480813433328050087758855264686119576962172239308693795757165821852416204341972383989932734803429262340722338155102209101262949249742423271698842023297303260161790575673111235465890298298313115123607606773968998153812286999642014609852579793691246016346088762321286205634215901479188632194659637483482564291616278532948239313229440231043277288768139550213348266388687453259281587854503890991561949632478855035090289390973718988003999026132015872678637873095678109625311008054489418857983565902063680699643165033912029944327726770869305240718416592070096139286401966725750087012218149733133695809600369751764951350040285926249203398111014953227533621844500744331562434532484217986108346261345897591234839970751854223281677187215956827243245910829019886390369784542622566912542747056097567984857136623679023878478161201477982939080513150258174523773529510165296934562786122241150783587755373348372764439838082000667214740034466322776918936967612878983488942094688102308427036452854504966759697318836044496702853190637396916357980928865719935397723495486787180416401415281489443785036291071517805285857583987711145474240156416477194116391354935466755593592608849200546384685403028080936417250583653368093407225310820844723570226809826951426162451204040711501448747856199922814664565893938488028643822313849852328452360667045805113679663751039248163336173274547275775636810977344539275827560597425160705468689657794530521602315939865780974801515414987097778078705357058008472376892422189750312758527140173117621279898744958406199843913365680297721208751934988504499713914285158032324823021340630312586072624541637765234505522051086318285359658520708173392709566445011404055106579055037417780393351658360904543047721422281816832539613634982525215232257690920254216409657452618066051777901592902884240599998882753691957540116954696152270401280857579766154722192925655963991820948894642657512288766330302133746367449217449351637104725732980832812726468187759356584218383594702792013663907689741738962252575782663990809792647011407580367850599381887184560094695833270775126181282015391041773950918244137561999937819240362469558235924171478702779448443108751901807414110290370706052085162975798361754251041642244867577350756338018895379263183389855955956527857227926155524494739363665533904528656215464288343162282921123290451842212532888101415884061619939195042230059898349966569463580186816717074818823215848647734386780911564660755175385552224428524049468033692299989300783900020690121517740696428573930196910500988278523053797637940257968953295112436166778910585557213381789089945453947915927374958600268237844486872037243488834616856290097850532497036933361942439802882364323553808208003875741710969289725499878566253048867033095150518452126944989251596392079421452606508516052325614861938282489838000815085351564642761700832096483117944401971780149213345335903336672376719229722069970766055482452247416927774637522135201716231722137632445699154022395494158227418930589911746931773776518735850032318014432883916374243795854695691221774098948611515564046609565094538115520921863711518684562543275047870530006998423140180169421109105925493596116719457630962328831271268328501760321771680400249657674186927113215573270049935709942324416387089242427584407651215572676037924765341808984312676941110313165951429479377670698881249643421933287404390485538222160837088907598277390184204138197811025854537088586701450623578513960109987476052535450100439353062072439709976445146790993381448994644609780957731953604938734950026860564555693224229691815630293922487606470873431166384205442489628760213650246991893040112513103835085621908060270866604873585849001704200923929789193938125116798421788115209259130435572321635660895603514383883939018953166274355609970015699780289236362349895374653428746875
Now another approach I have applied is through Divide and Concur via recursion
i.e. Fib(n) = fib(n-1) + Fib(n-2) and then further recursion for n-1 & n-2.....till 2 & 1. which is programmed as -
package com.company.dynamicProgramming;
import java.math.BigInteger;
public class FibonacciByBigDecimal {
public static void main(String ...args) {
int n = 100000;
BigInteger[] fibOfnS = new BigInteger[n + 1];
System.out.println("fibonacci of "+ n + " is : " + fibByDivCon(n, fibOfnS));
}
static BigInteger fibByDivCon(int n, BigInteger[] fibOfnS){
if(fibOfnS[n]!=null){
return fibOfnS[n];
}
if (n == 1 || n== 2){
fibOfnS[n] = BigInteger.ONE;
return BigInteger.ONE;
}
// creates 2 further entries in stack
BigInteger fibOfn = fibByDivCon(n-1, fibOfnS).add( fibByDivCon(n-2, fibOfnS)) ;
fibOfnS[n] = fibOfn;
return fibOfn;
}
}
When i ran the code for n = 100,000 the result is as below -
Exception in thread "main" java.lang.StackOverflowError
at com.company.dynamicProgramming.FibonacciByBigDecimal.fibByDivCon(FibonacciByBigDecimal.java:29)
at com.company.dynamicProgramming.FibonacciByBigDecimal.fibByDivCon(FibonacciByBigDecimal.java:29)
at com.company.dynamicProgramming.FibonacciByBigDecimal.fibByDivCon(FibonacciByBigDecimal.java:29)
Above you can see the StackOverflowError is created. Now the reason for this is too many recursion as -
// creates 2 further entries in stack
BigInteger fibOfn = fibByDivCon(n-1, fibOfnS).add( fibByDivCon(n-2, fibOfnS)) ;
So each entry in stack create 2 more entries and so on... which is represented as -
Eventually so many entries will be created that system is unable to handle in the stack and StackOverflowError thrown.
For Prevention :
For Above example perspective
Avoid using recursion approach or reduce/limit the recursion by again one level division like if n is too large then split the n so that system can handle with in its limit.
Use other approach, like the loop approach I have used in 1st code sample. (I am not at all intended to degrade Divide & Concur or Recursion as they are legendary approaches in many most famous algorithms.. my intention is to limit or stay away from recursion if I suspect stack overflow issues)
Considering this was tagged with "hacking", I suspect the "stack overflow" he's referring to is a call stack overflow, rather than a higher level stack overflow such as those referenced in most other answers here. It doesn't really apply to any managed or interpreted environments such as .NET, Java, Python, Perl, PHP, etc, which web apps are typically written in, so your only risk is the web server itself, which is probably written in C or C++.
Check out this thread:
https://stackoverflow.com/questions/7308/what-is-a-good-starting-point-for-learning-buffer-overflow
Stack overflow occurs when your program uses up the entire stack. The most common way this happens is when your program has a recursive function which calls itself forever. Every new call to the recursive function takes more stack until eventually your program uses up the entire stack.

Resources