I am a beginner and have just started studying machine learning and neural networks and have just understood the very basics of this vast and interesting domain.
From my basic knowledge, I know that a model/classifier can be used to Classify an image as something. But I was curious if there is a way to detect multiple instances of the same object and count the same.
Basically I wanted to calculate the density of traffic at a red light to dynamically control the flow of traffic, so I was curious if there was a way to detect multiple cars and count the number of cars at a red light by training the ConvNet on Images of Cars (and if there is a way to implement the same using tensor-flow)
You might consider using an off the shelf object detector, e.g., the Tensorflow Object Detection API (github.com/tensorflow/models/tree/master/object_detection) to first detect cars, and then count them.
CNN is one branch of the machine learning. It can be trained to classify different cars as one class, just like many other technologies applied in machine learning.
My understanding of your question is: you want to count the number of cars at the red light and make decision of the traffic dynamically. So I would seperate your question into two part
Count the number of cars
Optimize the traffic flow
For the question 1 which you are actually interested in
I would suggest you to have a look at:
Counting the number of vehicles from an image with machine learning
I hope this can be helpful
Related
By “Cold Start” I mean that often computer vision models for object detection or semantic segmentation require about 5000 images per class. So if an idea if floated within the company for e.g. we want to use object detection to count the number of wood logs when the truck is dispatched and then use the same app to count the number that is received.
So now the challenge is that you have only a few images of woods logs on a truck but to train any model you need thousands, so what do practitioners typically do for these prototypes?
Because at this stage it is not clear what model to try? It is also not very feasible to ask business to invest in collecting thousands of images of logs and label them?
That is why I am calling this “Cold Start”. How do you start?
What I have looked into is Conditional GANs, Pix-2-Pix but I am trying to understand the recommended method on how to start when you have very few images per object class.
I expect that when I drop a few images in a folder and call this library I end up getting a lot more images per class so I can then start my prototyping.
Note that asking for software libraries is specifically off-topic here.
No, there is no magic solution: if your data set doesn't have enough information in its images to train a hand-crafted model, no amount of software will change that fact. However, the first approach is to challenge that "fact": how do you know that you don't have enough images? What happened when you used what you have to train a model? You will train for more epochs before the model converges, but you should be able to achieve far better than random accuracy by training a comparable quantity of iterations.
I seriously doubt that you'll need to collect and label thousands of images: you have a very restricted paradigm, photos of log trucks taken from an vantage point you control. Training a model to count non-overlapping near-circles will take much less differentiation than, say, distinguishing motor vehicles from postal boxes.
Experiment with the basic models you have at hand -- you already have much more of the solution than you realize. If your data set is too small, go out the yard with a digital camera and get twice as many, three times, whatever you need. Flip the images left-right to get more input.
Does that get you moving?
Transfer learning solves the problem you are describing as "Cold Start". Basically you can import the weights obtained after training using a big and open dataset and just fine-tune them using the smaller dataset you already have. Data augmentation, freezing some of the layers, etc may help improving the results of a fine-tuned model.
I am new to machine learning. I got a task to find the total number of vehicles from an image using machine learning concept. I am using neural network. My image of worst case is given here.
Traffic Image
I need to find the total number of cars from this image. My idea is to cut this big image into small patches of image and train the network to count the vehicles from the small patches. Each patch will be having count less than 5. Then in the processing of new image, I could make use of a sliding window to get the total count of vehicles.
I just want to know whether this idea is possible or not OR should I go for feature extraction and training neural network with those features. If possible, whether there is any conditions for the dataset and training.
What you are looking for is called object detection. A starting point can be Deep Neural Networks for Object Detection or Region-based Convolutional Networks for Accurate Object Detection and Segmentation.
A similar, but much more difficult task is instance segmentation. One of the latest papers I've seen in this area is Pixel-level Encoding and Depth Layering for Instance-level Semantic Labeling.
Instance segmentation is probably the hardest tasks in Computer Vision. When you're new to machine learning / computer vision, you might first want to do image classification. If you want to go into the direction of instance segmentation, then you should continue with semantic segmentation and then instance segmentation.
A simple sliding window approach, where you only predict "car" / "no car" will not work, because in the image the cars are not separated by any "no car".
I'm curious as to whether research been done into random forests that combine unsupervised with supervised learning in a way allowing a single algorithm to find patterns in, and work with, multiple different data sets. I have googled every possible way to find research on this, and have come up empty. Can anyone point me in the right direction?
Note: I have already asked this question in the Data Sciences forum, but it's basically a dead forum so I came here.
(also read the comments and will incorporate the content in my answer)
From what I read between the lines is that you want to use Deep networks in a transfer learning setting. However, this would not be based on decision trees.
http://jmlr.csail.mit.edu/proceedings/papers/v27/mesnil12a/mesnil12a.pdf
There are many elements in your question:
1.) Machine learning algorithms, in general, don't care about the source of your data set. So basically you can feed the learning algorithms 20 different data sets and it will use all of them. However, the data should have the same underlying concept (except in the transfer learning case see below). This means: if you combine cats/dogs data with bills data this will not work or make it much harder for the algorithms. At least all input features need to be identical (exceptions exists), e.g, it is hard to combine images with text.
2.) labeled/unlabeled: Two important terms: a data set is a set of data points with a fixed number of dimensions. Datapoint i might be described as {Xi1,....Xin} where each Xi might for example be a pixel. A label Yi is from another domain, e.g., cats and dogs
3.) unsupervised learning data without any labels. (I have the gut feeling that this is not what you want.
4.) semi-supervised learning: The idea is basically that you combine data where you have labels with data without labels. Basically you have a set of images labeled as cats and dogs {Xi1,..,Xin,Yi} and a second set which contains images with cats/dogs but no labels {Xj1,..,Xjn}. The algorithm can use this information to build better classifiers as the unlabeld data provide information on how images look in general.
3.) transfer learning (I think this come closest to what you want). The Idea is that you provide a data set of cats and dogs and learn a classifier. Afterwards you want to train the classifier with images of cats/dogs/hamster. The training does not need to start from scratch but can use the cats/dogs classifier to converge much faster
4.) feature generation / feature construction The idea is that the algoritm learns features like "eyes". This features are used in the next step to learn the classifier. I'm mainly aware of this in the context of deep learning. Where the algoritm learns in the first step concepts like edges and constructs increasingly complex features like faces cats intolerant it can describe things like "the man on the elephant. This combined with transfer learning is probably what you want. However deep learning is based on Neural networks besides a few exceptions.
5.) outlier detection you provide a data set of cats/dogs as known images. When you provide the cats/dogs/hamster classifier. The classifier tells you that it has never seen something like a hamster before.
6.) active learning The idea is that you don't provide labels for all examples (Data points) beforehand, but that the algorithms asks you to label certain data points. This way you need to label much less data.
I am right now in a serious problem, I need to compare images of flowers (carnations) using a genetic algorithm, the program must determine which variety does the flower belongs to (until now I am using 15 different varieties), the thing is I am having difficulties constructing the chromosome, right know I am only analysing the HSV of each image, then a take every channel and calculate the mean for each (n=255), after that I calculate the correlation between HS, HV and SV, I expected that the mean would be enough to locate any new flower next to the clusters of flowers of the variety it belongs (by the way, I have a database of all the flowers used for training purpose) by calculating the distance between the mean of the flower and the centroids of each cluster, and probably using the correlations for adjustment, but that distance is usually way smaller to a different variety than the one it must be. Is there a way to classify this flowers using ONLY colours (I've read of applications that uses the texture, but that's way out of my league), especially using a genetic algorithm (I know Neural Networks are more appropriate to this kind of analysis but that's what the teacher asked)?. Thank you very much. By the way I am working on OpenCV, don’t know if it's relevant. PS: Excuse my English if any mistakes were done, not my native language.
I know that most common object detection involves Haar cascades and that there are many techniques for feature detection such as SIFT, SURF, STAR, ORB, etc... but if my end goal is to recognizes objects doesn't both ways end up giving me the same result? I understand using feature techniques on simple shapes and patterns but for complex objects these feature algorithms seem to work as well.
I don't need to know the difference in how they function but whether or not having one of them is enough to exclude the other. If I use Haar cascading, do I need to bother with SIFT? Why bother?
thanks
EDIT: for my purposes I want to implement object recognition on a broad class of things. Meaning that any cups that are similarly shaped as cups will be picked up as part of class cups. But I also want to specify instances, meaning a NYC cup will be picked up as an instance NYC cup.
Object detection usually consists of two steps: feature detection and classification.
In the feature detection step, the relevant features of the object to be detected are gathered.
These features are input to the second step, classification. (Even Haar cascading can be used
for feature detection, to my knowledge.) Classification involves algorithms
such as neural networks, K-nearest neighbor, and so on. The goal of classification is to find
out whether the detected features correspond to features that the object to be detected
would have. Classification generally belongs to the realm of machine learning.
Face detection, for example, is an example of object detection.
EDIT (Jul. 9, 2018):
With the advent of deep learning, neural networks with multiple hidden layers have come into wide use, making it relatively easy to see the difference between feature detection and object detection. A deep learning neural network consists of two or more hidden layers, each of which is specialized for a specific part of the task at hand. For neural networks that detect objects from an image, the earlier layers arrange low-level features into a many-dimensional space (feature detection), and the later layers classify objects according to where those features are found in that many-dimensional space (object detection). A nice introduction to neural networks of this kind is found in the Wolfram Blog article "Launching the Wolfram Neural Net Repository".
Normally objects are collections of features. A feature tends to be a very low-level primitive thing. An object implies moving the understanding of the scene to the next level up.
A feature might be something like a corner, an edge etc. whereas an object might be something like a book, a box, a desk. These objects are all composed of multiple features, some of which may be visible in any given scene.
Invariance, speed, storage; few reasons, I can think on top of my head. The other method to do would be to keep the complete image and then check whether the given image is similar to glass images you have in your database. But if you have a compressed representation of the glass, it will need lesser computation (thus faster), will need lesser storage and the features tells you the invariance across images.
Both the methods you mentioned are essentially the same with slight differences. In case of Haar, you detect the Haar features then you boost them to increase the confidence. Boosting is nothing but a meta-classifier, which smartly chooses which all Harr features to be included in your final meta-classification, so that it can give a better estimate. The other method, also more or less does this, except that you have more "sophisticated" features. The main difference is that, you don't use boosting directly. You tend to use some sort of classification or clustering, like MoG (Mixture of Gaussian) or K-Mean or some other heuristic to cluster your data. Your clustering largely depends on your features and application.
What will work in your case : that is a tough question. If I were you, I would play around with Haar and if it doesn't work, would try the other method (obs :>). Be aware that you might want to segment the image and give some sort of a boundary around for it to detect glasses.