Scaling image coordinates in UIImageView - ios

So I have a project where I take an image, display it and depending on where you tap it gives back the rgb values.
However, the display on the iphone is much smaller than the image resolution so the image gets scaled down.
I tried to circumnavigate this by multiplying the coordinates of the tapLocation on the UIImageView by: image.x/imageview.x and image.y/imageview.y respectively.
But still the colors are way off.
My code:
#IBAction func imageTap(_ sender: UITapGestureRecognizer) {
if sender.state == .ended {
let location = sender.location(in: imageDisplay)
let widthFactor = image.size.width / imageDisplay.frame.width
let heightFactor = image.size.height / imageDisplay.frame.height
let scaledWidth = location.x * widthFactor
let scaledHeight = location.y * heightFactor
let scaledLocation = CGPoint(x: scaledWidth, y: scaledHeight)
let colorAtLocation = image.getPixelColor(pos: scaledLocation)
let rgbValues = colorAtLocation.rgb()
let rValue = rgbValues!.red
let gValue = rgbValues!.green
let bValue = rgbValues!.blue
redValue.text = "\(String(describing: rValue))"
greenValue.text = "\(String(describing: gValue))"
blueValue.text = "\(String(describing: bValue))"
colorViewer.backgroundColor = colorAtLocation
}
}
How should I calculate coordinate correctly?
Possible places where this could go wrong:
The 0;0 isn't where I think it is
The UIImageView's Content Mode shouldn't be Aspect fit
The image scaling isn't as linear as I taught
This is all I could think of but how would I go to check these?

Related

Achieve same CIFilter effect on different sizes of same image

I'm building a photo editor and to keep a good performance I filter a small version of the image first and when the user wants to export it, then I filter the higher resolution image.
I'm using CIGaussianBlur filter but I can't achieve same results for different images resolutions.
This is my code:
class ViewController : UIViewController {
var originalImage = UIImage()
var previewImageView = UIImageView()
var previewCIImage: CIImage!
var scaleFactor = CGFloat()
let blurFilter = CIFilter.gaussianBlur()
var blurSlider = UISlider()
var blurRadius = Float()
override func viewDidLoad() {
previewImageView.image = originalImage.scalePreservingAspectRatio(targetSize: previewImageView.frame.size)
previewCIImage = CIImage(image: previewImageView.image!)
// Get the scale factor
scaleFactor = originalImage.getScaleFactor(targetSize: previewImageView.frame.size)
blurSlider.addTarget(self, action: #selector(blurChanged(slider:)), for: .valueChanged)
}
#objc func blurChanged(slider: UISlider) {
blurRadius = slider.value
let scaledRadius = blurRadius * Float(scaleFactor)
blurFilter.radius = scaledRadius
MTKView.setNeedsDisplay()
}
func exportFullSizeImage() -> UIImage {
let inputImage = CIImage(image: originalImage)!
blurFilter.inputImage = inputImage.clampedToExtent()
// Assuming scaleFactor is 1.0 for the unscaled image
let scaledRadius = blurRadius * 1.0
blurFilter.radius = scaledRadius
let output = (blurFilter.outputImage)!
let outputCGImage = context.createCGImage(output, from: output.extent)
return UIImage(cgImage: outputCGImage!)
}
}
extension UIImage {
func scalePreservingAspectRatio(targetSize: CGSize) -> UIImage {
let widthRatio = targetSize.width / size.width
let heightRatio = targetSize.height / size.height
let scaleFactor = min(widthRatio, heightRatio)
let scaledImageSize = CGSize(
width: size.width * scaleFactor,
height: size.height * scaleFactor
)
let renderer = UIGraphicsImageRenderer(
size: scaledImageSize
)
let scaledImage = renderer.image { _ in
self.draw(in: CGRect(
origin: .zero,
size: scaledImageSize
))
}
return scaledImage
}
func getScaleFactor(targetSize: CGSize) -> CGFloat {
let widthRatio = targetSize.width / size.width
let heightRatio = targetSize.height / size.height
let scaleFactor = min(widthRatio, heightRatio)
return scaleFactor
}
}
Here's the output of the small version of the image (preview image):
And here's the output of the full size image (unscaled image):
The results are clearly different, the full size/unscaled image has more blur. I need to achieve the same blur effect on both images.
I've found two similar questions: Output of CIFilter has different effect for different sizes of same image and How to achieve same CIFilter effect on multiple sizes of same image
I know the scale factor of the resized image, that's maybe useful to get an answer.
The parameter scaling from the linked answer should work for all images, regardless of their aspect ratio. The important part is that you apply the scale factor to both images, the preview and the export.
Alternatively, since you have the scale factor of the resized image, you can use that to scale the parameter (instead of using the image size):
// assuming scaleFactor is 1.0 for the unscaled image
let scaledRadius = radius * scaleFactor
filter.setValue(scaledRadius, forKey: "inputRadius")
Please also note that not every parameter of every filter needs scaling to achieve consistency across different image sizes. Usually, only parameters that describe some kind of effect radius or size need scaling.

Spritekit Camera Node scale but pin the bottom of the scene

I have a camera node that is scaled at 1. When I run the game, I want it to scale it down (i.e. zoom out) but keep the "floor" at the bottom. How would I go about pinning the camera node to the bottom of the scene and effectively zooming "up" (difficult to explain). So the bottom of the scene stays at the bottom but the rest zooms out.
I have had a go with SKConstraints but not having any luck (I'm quite new at SpriteKit)
func setConstraints(with scene: SKScene, and frame: CGRect, to node: SKNode?) {
let scaledSize = CGSize(width: scene.size.width * xScale, height: scene.size.height * yScale)
let boardContentRect = frame
let xInset = min((scaledSize.width / 2), boardContentRect.width / 2)
let yInset = min((scaledSize.height / 2), boardContentRect.height / 2)
let insetContentRect = boardContentRect.insetBy(dx: xInset, dy: yInset)
let xRange = SKRange(lowerLimit: insetContentRect.minX, upperLimit: insetContentRect.maxX)
let yRange = SKRange(lowerLimit: insetContentRect.minY, upperLimit: insetContentRect.maxY)
let levelEdgeConstraint = SKConstraint.positionX(xRange, y: yRange)
if let node = node {
let zeroRange = SKRange(constantValue: 0.0)
let positionConstraint = SKConstraint.distance(zeroRange, to: node)
constraints = [positionConstraint, levelEdgeConstraint]
} else {
constraints = [levelEdgeConstraint]
}
}
then calling the function with:
gameCamera.setConstraints(with: self, and: scene!.frame, to: nil)
(This was code from a tutorial I was following) The "setConstraints" function is an extension of SKCameraNode
I'm not sure this will give me the correct output, but when I run the code to scale, it just zooms from the middle and shows the surrounding area of the scene .sks file.
gameCamera.run(SKAction.scale(to: 0.2, duration: 100))
This is the code to scale the gameCamera
EDIT: Answer below is nearly what I was looking for, this is my updated answer:
let scaleTo = 0.2
let duration = 100
let scaleTop = SKAction.customAction(withDuration:duration){
(node, elapsedTime) in
let newScale = 1 - ((elapsedTime/duration) * (1-scaleTo))
let currentScaleY = node.yScale
let currentHeight = node.scene!.size.height * currentScaleY
let newHeight = node.scene!.size.height * newScale
let heightDiff = newHeight - currentHeight
let yOffset = heightDiff / 2
node.setScale(newScale)
node.position.y += yOffset
}
You cannot use a constraint because your scale size is dynamic.
Instead you need to move your camera position to give the illusion it is only scaling in 3 directions.
To do this, I would recommend creating a custom action.
let scaleTo = 2.0
let duration = 1.0
let currentNodeScale = 0.0
let scaleTop = SKCustomAction(withDuration:duration){
(node, elapsedTime) in
if elapsedTime == 0 {currentNodeScale = node.scale}
let newScale = currentNodeScale - ((elapsedTime/duration) * (currentNodeScale-scaleTo))
let currentYScale = node.yScale
let currentHeight = node.scene.size.height * currentYScale
let newHeight = node.scene.size.height * newScale
let heightDiff = newHeight - currentHeight
let yOffset = heightDiff / 2
node.scale(to:newScale)
node.position.y += yOffset
}
What this is doing is comparing the new height of your camera with the old height, and moving it 1/2 the distance.
So if your current height is 1, this means your camera sees [-1/2 to 1/2] on the y axis. If you new scale height is 2, then your camera sees [-1 to 1] on the y axis. We need to move the camera up so that the camera sees [-1/2 to 3/2], meaning we need to add 1/2. So we do 2 - 1, which is 1, then go 1/2 that distance. This makes our yOffset 1/2, which you add to the camera.

Load large 3d Object .scn file in ARSCNView Aspect Fit in to the screen ARKIT Swift iOS

I am developing ARKit Application using 3d models. So for that I have used 3d models & added gestures for move, rotate & zoom 3d models.
Now I am facing only 1 issue but I am not sure if this issue relates to what. Is there an issue in 3d model or if anything missing in my program.
Issue is the 3d model I am using shows very big & goes out of the screen. I am trying to scale it down size but its very big.
Here is my code :
#IBOutlet var mySceneView: ARSCNView!
var selectedNode = SCNNode()
var prevLoc = CGPoint()
var touchCount : Int = 0
override func viewDidLoad() {
super.viewDidLoad()
self.lblTitle.text = self.sceneTitle
let mySCN = SCNScene.init(named: "art.scnassets/\(self.sceneImagename).scn")!
self.mySceneView.scene = mySCN
let cameraNode = SCNNode()
cameraNode.camera = SCNCamera()
cameraNode.position = SCNVector3Make(0, 0, 0)
self.mySceneView.scene.rootNode.addChildNode(cameraNode)
self.mySceneView.allowsCameraControl = true
self.mySceneView.autoenablesDefaultLighting = true
let tapGesture = UITapGestureRecognizer(target: self, action: #selector(detailPage.doHandleTap(_:)))
let panGesture = UIPanGestureRecognizer(target: self, action: #selector(detailPage.doHandlePan(_:)))
let gesturesArray = NSMutableArray()
gesturesArray.add(tapGesture)
gesturesArray.add(panGesture)
gesturesArray.addObjects(from: self.mySceneView.gestureRecognizers!)
self.mySceneView.gestureRecognizers = (gesturesArray as! [UIGestureRecognizer])
}
//MARK:- Handle Gesture
#objc func doHandlePan(_ sender: UIPanGestureRecognizer) {
var delta = sender.translation(in: self.view)
let loc = sender.location(in: self.view)
if sender.state == .began {
self.prevLoc = loc
self.touchCount = sender.numberOfTouches
} else if sender.state == .changed {
delta = CGPoint(x: loc.x - prevLoc.x, y: loc.y - prevLoc.y)
prevLoc = loc
if self.touchCount != sender.numberOfTouches {
return
}
var rotMat = SCNMatrix4()
if touchCount == 2 {
rotMat = SCNMatrix4MakeTranslation(Float(delta.x * 0.025), Float(delta.y * -0.025), 0)
} else {
let rotMatX = SCNMatrix4Rotate(SCNMatrix4Identity, Float((1.0/100) * delta.y), 1, 0, 0)
let rotMatY = SCNMatrix4Rotate(SCNMatrix4Identity, Float((1.0/100) * delta.x), 0, 1, 0)
rotMat = SCNMatrix4Mult(rotMatX, rotMatY)
}
let transMat = SCNMatrix4MakeTranslation(selectedNode.position.x, selectedNode.position.y, selectedNode.position.z)
selectedNode.transform = SCNMatrix4Mult(selectedNode.transform, SCNMatrix4Invert(transMat))
let parentNodeTransMat = SCNMatrix4MakeTranslation((selectedNode.parent?.worldPosition.x)!, (selectedNode.parent?.worldPosition.y)!, (selectedNode.parent?.worldPosition.z)!)
let parentNodeMatWOTrans = SCNMatrix4Mult(selectedNode.parent!.worldTransform, SCNMatrix4Invert(parentNodeTransMat))
selectedNode.transform = SCNMatrix4Mult(selectedNode.transform, parentNodeMatWOTrans)
let camorbitNodeTransMat = SCNMatrix4MakeTranslation((self.mySceneView.pointOfView?.worldPosition.x)!, (self.mySceneView.pointOfView?.worldPosition.y)!, (self.mySceneView.pointOfView?.worldPosition.z)!)
let camorbitNodeMatWOTrans = SCNMatrix4Mult(self.mySceneView.pointOfView!.worldTransform, SCNMatrix4Invert(camorbitNodeTransMat))
selectedNode.transform = SCNMatrix4Mult(selectedNode.transform, SCNMatrix4Invert(camorbitNodeMatWOTrans))
selectedNode.transform = SCNMatrix4Mult(selectedNode.transform, rotMat)
selectedNode.transform = SCNMatrix4Mult(selectedNode.transform, camorbitNodeMatWOTrans)
selectedNode.transform = SCNMatrix4Mult(selectedNode.transform, SCNMatrix4Invert(parentNodeMatWOTrans))
selectedNode.transform = SCNMatrix4Mult(selectedNode.transform, transMat)
}
}
#objc func doHandleTap(_ sender: UITapGestureRecognizer) {
let p = sender.location(in: self.mySceneView)
var hitResults = self.mySceneView.hitTest(p, options: nil)
if (p.x > self.mySceneView.frame.size.width-100 || p.y < 100) {
self.mySceneView.allowsCameraControl = !self.mySceneView.allowsCameraControl
}
if hitResults.count > 0 {
let result = hitResults[0]
let material = result.node.geometry?.firstMaterial
selectedNode = result.node
SCNTransaction.begin()
SCNTransaction.animationDuration = 0.3
SCNTransaction.completionBlock = {
SCNTransaction.begin()
SCNTransaction.animationDuration = 0.3
SCNTransaction.commit()
}
material?.emission.contents = UIColor.white
SCNTransaction.commit()
}
}
My Question is :
Can we set any size of 3d object model Aspect fit in screen size in the centre of the screen ? Please suggest if there is some way for it.
Any guidence or suggestions will be highly appreciated.
What you need to is to use getBoundingSphereCenter to get the bounding sphere size, then can project that to the screen. Or alternatively get the ratio of that radius over the distance between scenekit camera and the object position. This way you will know how big the object will look on the screen. To the scale down, you simple set the scale property of your object.
For the second part, you can use projectPoint.
The way I handled this is making sure the 3D model always has a fixed size.
For example, if the 3D model is a small cup or a large house, I insure it always has a width of 25 cm on the scene's coordinate space (while maintaining the ratios between x y z).
You can calculate the width of the bounding box of the node like this:
let mySCN = SCNScene(named: "art.scnassets/\(self.sceneImagename).scn")!
let minX = mySCN.rootNode.boundingBox.min.x
let maxX = mySCN.rootNode.boundingBox.max.x
// change 0.25 to whatever you need
// this value is in meters
let scaleValue = 0.25 / abs(minX - maxX)
// scale all axes of the node using `scaleValue`
// this maintains ratios and does not stretch the model
mySCN.rootNode.scale = SCNVector3(scaleValue, scaleValue, scaleValue)
self.mySceneView.scene = mySCN
You can also calculate the scale value based on height or depth by using the y or z value of the bounding box.

Crop picture from UIImagePickerController like credit card scanning in iOS [duplicate]

I'm trying to crop a sub-image of a image view using an overlay UIView that can be positioned anywhere in the UIImageView. I'm borrowing a solution from a similar post on how to solve this when the UIImageView content mode is 'Aspect Fit'. That proposed solution is:
func computeCropRect(for sourceFrame : CGRect) -> CGRect {
let widthScale = bounds.size.width / image!.size.width
let heightScale = bounds.size.height / image!.size.height
var x : CGFloat = 0
var y : CGFloat = 0
var width : CGFloat = 0
var height : CGFloat = 0
var offSet : CGFloat = 0
if widthScale < heightScale {
offSet = (bounds.size.height - (image!.size.height * widthScale))/2
x = sourceFrame.origin.x / widthScale
y = (sourceFrame.origin.y - offSet) / widthScale
width = sourceFrame.size.width / widthScale
height = sourceFrame.size.height / widthScale
} else {
offSet = (bounds.size.width - (image!.size.width * heightScale))/2
x = (sourceFrame.origin.x - offSet) / heightScale
y = sourceFrame.origin.y / heightScale
width = sourceFrame.size.width / heightScale
height = sourceFrame.size.height / heightScale
}
return CGRect(x: x, y: y, width: width, height: height)
}
The problem is that using this solution when the image view is aspect fill causes the cropped segment to not line up exactly with where the overlay UIView was positioned. I'm not quite sure how to adapt this code to accommodate for Aspect Fill or reposition my overlay UIView so that it lines up 1:1 with the segment I'm trying to crop.
UPDATE Solved using Matt's answer below
class ViewController: UIViewController {
#IBOutlet weak var catImageView: UIImageView!
private var cropView : CropView!
override func viewDidLoad() {
super.viewDidLoad()
cropView = CropView(frame: CGRect(x: 0, y: 0, width: 45, height: 45))
catImageView.image = UIImage(named: "cat")
catImageView.clipsToBounds = true
catImageView.layer.borderColor = UIColor.purple.cgColor
catImageView.layer.borderWidth = 2.0
catImageView.backgroundColor = UIColor.yellow
catImageView.addSubview(cropView)
let imageSize = catImageView.image!.size
let imageViewSize = catImageView.bounds.size
var scale : CGFloat = imageViewSize.width / imageSize.width
if imageSize.height * scale < imageViewSize.height {
scale = imageViewSize.height / imageSize.height
}
let croppedImageSize = CGSize(width: imageViewSize.width/scale, height: imageViewSize.height/scale)
let croppedImrect =
CGRect(origin: CGPoint(x: (imageSize.width-croppedImageSize.width)/2.0,
y: (imageSize.height-croppedImageSize.height)/2.0),
size: croppedImageSize)
let renderer = UIGraphicsImageRenderer(size:croppedImageSize)
let _ = renderer.image { _ in
catImageView.image!.draw(at: CGPoint(x:-croppedImrect.origin.x, y:-croppedImrect.origin.y))
}
}
#IBAction func performCrop(_ sender: Any) {
let cropFrame = catImageView.computeCropRect(for: cropView.frame)
if let imageRef = catImageView.image?.cgImage?.cropping(to: cropFrame) {
catImageView.image = UIImage(cgImage: imageRef)
}
}
#IBAction func resetCrop(_ sender: Any) {
catImageView.image = UIImage(named: "cat")
}
}
The Final Result
Let's divide the problem into two parts:
Given the size of a UIImageView and the size of its UIImage, if the UIImageView's content mode is Aspect Fill, what is the part of the UIImage that fits into the UIImageView? We need, in effect, to crop the original image to match what the UIImageView is actually displaying.
Given an arbitrary rect within the UIImageView, what part of the cropped image (derived in part 1) does it correspond to?
The first part is the interesting part, so let's try it. (The second part will then turn out to be trivial.)
Here's the original image I'll use:
https://static1.squarespace.com/static/54e8ba93e4b07c3f655b452e/t/56c2a04520c64707756f4267/1455596221531/
That image is 1000x611. Here's what it looks like scaled down (but keep in mind that I'm going to be using the original image throughout):
My image view, however, will be 139x182, and is set to Aspect Fill. When it displays the image, it looks like this:
The problem we want to solve is: what part of the original image is being displayed in my image view, if my image view is set to Aspect Fill?
Here we go. Assume that iv is the image view:
let imsize = iv.image!.size
let ivsize = iv.bounds.size
var scale : CGFloat = ivsize.width / imsize.width
if imsize.height * scale < ivsize.height {
scale = ivsize.height / imsize.height
}
let croppedImsize = CGSize(width:ivsize.width/scale, height:ivsize.height/scale)
let croppedImrect =
CGRect(origin: CGPoint(x: (imsize.width-croppedImsize.width)/2.0,
y: (imsize.height-croppedImsize.height)/2.0),
size: croppedImsize)
So now we have solved the problem: croppedImrect is the region of the original image that is showing in the image view. Let's proceed to use our knowledge, by actually cropping the image to a new image matching what is shown in the image view:
let r = UIGraphicsImageRenderer(size:croppedImsize)
let croppedIm = r.image { _ in
iv.image!.draw(at: CGPoint(x:-croppedImrect.origin.x, y:-croppedImrect.origin.y))
}
The result is this image (ignore the gray border):
But lo and behold, that is the correct answer! I have extracted from the original image exactly the region portrayed in the interior of the image view.
So now you have all the information you need. croppedIm is the UIImage actually displayed in the clipped area of the image view. scale is the scale between the image view and that image. Therefore, you can easily solve the problem you originally proposed! Given any rectangle imposed upon the image view, in the image view's bounds coordinates, you simply apply the scale (i.e. divide all four of its attributes by scale) — and now you have the same rectangle as a portion of croppedIm.
(Observe that we didn't really need to crop the original image to get croppedIm; it was sufficient, in reality, to know how to perform that crop. The important information is the scale along with the origin of croppedImRect; given that information, you can take the rectangle imposed upon the image view, scale it, and offset it to get the desired rectangle of the original image.)
EDIT I added a little screencast just to show that my approach works as a proof of concept:
EDIT Also created a downloadable example project here:
https://github.com/mattneub/Programming-iOS-Book-Examples/blob/39cc800d18aa484d17c26ffcbab8bbe51c614573/bk2ch02p058cropImageView/Cropper/ViewController.swift
But note that I can't guarantee that URL will last forever, so please read the discussion above to understand the approach used.
Matt answered the question perfectly. I was creating a full-screen camera and had a need to make the final output match the full-screen preview. Offering here a compact extension of Matt's overall answer in Swift 5 for easy use by others. Recommend reading Matt's answer as it explains things very well.
extension UIImage {
func cropToRect(rect: CGRect) -> UIImage? {
var scale = rect.width / self.size.width
scale = self.size.height * scale < rect.height ? rect.height/self.size.height : scale
let croppedImsize = CGSize(width:rect.width/scale, height:rect.height/scale)
let croppedImrect = CGRect(origin: CGPoint(x: (self.size.width-croppedImsize.width)/2.0,
y: (self.size.height-croppedImsize.height)/2.0),
size: croppedImsize)
UIGraphicsBeginImageContextWithOptions(croppedImsize, true, 0)
self.draw(at: CGPoint(x:-croppedImrect.origin.x, y:-croppedImrect.origin.y))
let croppedImage = UIGraphicsGetImageFromCurrentImageContext()
UIGraphicsEndImageContext()
return croppedImage
}
}

Adding AnchorPoint to SKNode breaks SKScene positioning

I am trying to have my SKCameraNode start in the bottom left corner, and have my background anchored there as well. When I set the anchor point to CGPointZero, here is what my camera shows:
EDIT:
Interestingly, If I set my AnchorPoint to CGPoint(x:0.5, y:0.2), I get it mostly lined up. Does it have to do with the camera scale?
EDIT 2:
If I change my scene size, I can change where the background nodes show up. Usually they appear with their anchor point placed in the center of the screen, which implies the anchorPoint of the scene is in the center of the screen.
I am new to using the SKCameraNode, and so I am probably setting it's constraints incorrectly.
Here are my camera constraints: I don't have my player added yet, but I want to set my world up first before I add my player. Again I am trying to have everything anchored off CGPointZero.
//Camera Settings
func setCameraConstraints() {
guard let camera = camera else { return }
if let player = worldLayer.childNodeWithName("playerNode") as? EntityNode {
let zeroRange = SKRange(constantValue: 0.0)
let playerNode = player
let playerLocationConstraint = SKConstraint.distance(zeroRange, toNode: playerNode)
let scaledSize = CGSize(width: SKMViewSize!.width * camera.xScale, height: SKMViewSize!.height * camera.yScale)
let boardContentRect = worldFrame
let xInset = min((scaledSize.width / 2), boardContentRect.width / 2)
let yInset = min((scaledSize.height / 2), boardContentRect.height / 2)
let insetContentRect = boardContentRect.insetBy(dx: xInset, dy: yInset)
let xRange = SKRange(lowerLimit: insetContentRect.minX, upperLimit: insetContentRect.maxX)
let yRange = SKRange(lowerLimit: insetContentRect.minY, upperLimit: insetContentRect.maxY)
let levelEdgeConstraint = SKConstraint.positionX(xRange, y: yRange)
levelEdgeConstraint.referenceNode = worldLayer
camera.constraints = [playerLocationConstraint, levelEdgeConstraint]
}
}
I have been using a Udemy course to learn the SKCameraNode, and I have been trying to modify it.
Here is where I set the SKMViewSize:
convenience init(screenSize: CGSize, canvasSize: CGSize) {
self.init()
if (screenSize.height < screenSize.width) {
SKMViewSize = screenSize
}
else {
SKMViewSize = CGSize(width: screenSize.height, height: screenSize.width)
}
SKMSceneSize = canvasSize
SKMScale = (SKMViewSize!.height / SKMSceneSize!.height)
let scale:CGFloat = min( SKMSceneSize!.width/SKMViewSize!.width, SKMSceneSize!.height/SKMViewSize!.height )
SKMUIRect = CGRect(x: ((((SKMViewSize!.width * scale) - SKMSceneSize!.width) * 0.5) * -1.0), y: ((((SKMViewSize!.height * scale) - SKMSceneSize!.height) * 0.5) * -1.0), width: SKMViewSize!.width * scale, height: SKMViewSize!.height * scale)
}
How can I get both the camera to be constrained by my world, and have everything anchored to the CGPointZero?

Resources