Interfacing pic32mx795f512l with DS3234 - pic32

I am new to pic32 controller, I want to interface pic32mx795f512l with DS3234 using SPI. Can anyone guide me, how to do exactly? I have gone through data sheet of both.

Take a look at the datasheet for the timing diagram: https://datasheets.maximintegrated.com/en/ds/DS3234.pdf Then take a look at the Family Reference manual for PIC32 SPI section. (Google it) you'll need to setup a SPI bus on the PIC and write data to it, start at the low-level and use the registers, not Harmony. I don't believe myself or anyone here is going to do it for you, I could have it running in about 10 min if I had the part.

Related

Control of shift registers with ESP8266 and MicroPython

I've an issue with my current micropython project on my ESP8266. I've a 10x10 LED matrix which i would like to control via 4 shift registers.
In general 3 pins are required for the controlling DATA, LATCH and CLOCK. After some hours of internet searching the most promising solution was the usage of SPI, where also found some useful instructions for the pyboard (thank you for the code btw):
https://forum.micropython.org/viewtopic.php?t=1219
I tried to replace the pyboard specific librarys with the general machine module for the ESP8266 to get access to the SPI class. It worked fine till a specific point but the main issue at the moment is that it was not capable provide a binary signal at the DATA pin.
To be honest I'm a little bit confused about the write methods in the machine.SPI class. The docu says the return value is None. So in general what is the purpose of a write method with a return value of None (sry for the maybe silly question)
Is there maybe another solution to get a binary signal out of the data pin? I'm not sure anymore if the usage of SPI is the best way to manage the controlling. Do you have some other examples or tutorials to get deeper into the topic?
Thank you for your kind response in advance,
BR charlzo

Alternative ZigBee Stack

Is there any stack that can be an alternative for the Microchip ZigBee Stack? I have a PIC18F27J53 microcontroller and MRF24J40MB Transceiver. I tried to read and understand the examples included in the Microchip ZigBee Stack but I have no luck. I think the examples are too complex for beginners like me. I only intend to send and receive data to and from sensor nodes. Also, PIC18F27J53 is not included in the Zena Configuration Tool device list.
Any help will be much appreciated.
1.You can try cc2500 rf pro. Its easier, cleaner and quite inexpensive than ZigBee.
2. OR even better you can try to use ZigBee with the arduino. You have inbuilt libraries, and if you say you are a beginner, then sending data will be as easy as writing to the UART port, which is by the way a one line command. 3. OR if you dont mind lower frequencies you can go for the standard rf module (or so it is called). You can find more about it, and how to use it here. http://extremeelectronics.co.in/rf/rf-communication-between-microcontrollers-part-i/
I would go for Option 2 first, then 3 then 1. (since you said that you are a beginner).

Microcontroller Programming in Delphi

I've been searching for some information regarding microcontroller programming but the info I find is either way over my head or doesn't appear to exist. I'm looking for something easier to digest! I'm relatively new to programming and come from an SQL DBA background and decided that it would be quicker for me to learn some programming fundamentals and then teach myself Delphi than it would to get some changes implemented through my company's insane design change note system!
After a couple of years of Delphi programming I can cope with writing database applications without too much bother and I want to be able to move on a level.
We use PIC microcontrollers on our PCBs; mainly the PIC18F family. The software on the PICS is written in C but there are parameters values that are written to by a Delphi application that interface with the PIC using an ActiveX control.
Basically, SQL Database holds parameter info, Delphi client app retrieves those values, passes them to the ActiveX controll which does all the low level stuff on the PIC. For example the internal EEPROM will have a map and within any particular address a value will be stored to switch something on or off or hold an integer value etc.
I've gotten hold of an MPLAB kit which has an ICD2 device that can read and write values to the internal EEPROM and I understand how to change these hexadecimal values using MPLAB software.
My hope isn't to learn embedded microcontroller programming; rather that I can write a Delphi app that will do something similar to MPLAB software. E.g read and write values to certain memory addresses within the EEPROM.
I'd be very gratefull if anyone can point me in the right direction of any libraries or components that may already exist for bridging this gap between simple Delphi form application and writing low level PIC EEPROM. I doubt such any easy interface exists but I thought I'd ask. To summarise I want to be able to have a simple form app, with some edit boxes that the user types in or selects from dropdown boxes, parameter values, to click on a button and to assign those parameter values to specific EEPROM memory addresses. Thank you for reading and any comments would be gratefully received.
Regards
KD
I'm a big fan of MikroElectronika and have used their Pascal tools for pic16 series MCU with great success (touch screen interfaces, ZigBee, ...).
http://www.mikroe.com/
Updated 2015 Answer:
Why not a Raspberry Pi with FreePascal and Lazarus? The boards cost from $5 to $25 US, as of this date, and the development tools are free.
Original 2012 Answer:
If you like to use Pascal, you might find Free Pascal useful on small embedded systems, but the minimum I believe you will find it can compile on is a Linux-based ARM embedded system. The fact that you use pascal on both sides is very unlikely to help you accomplish anything major.
If you want to go all the way down the the smallest PIC microcontrollers, you'll find that it's almost always a variant of C that you'll be using. Frankly, at that level, the differences aren't that much. If you can write Pascal, you can learn enough C in a day, to use with microcontrollers.
Don't be scared to use the native language that most microcontrollers support. My personal favorites are the Rabbit microcontrollers, formerly from Z-World, now from digi -- I think I paid about $100 US for the first board and development toolkit.
Interfacing such an application with delphi is pretty easy, usually these days, I would interface using TCP/IP over either wired Ethernet, or wireless (Wifi). But if you really want to you could use RS-232 or RS-485 serial links. (RS-485 has the advantage that you can wire it up to 5 miles long.) If I was using a serial link, I'd probably implement something like Modbus on both sides, if I just wanted to send some numeric data back and forth, and if I was doing something text-oriented, I think I'd write a mini HTTP web server on the embedded controller, and most boards these days come with enough HTTP server demos to make that drop-dead easy.
Delphi outputs Win32 and Win64 native applications you can write software that can interact with certain devices if the PCB has serial comunication or I2C you can write software that in Delphi that it will interact with the physical device.
But if you want to programm the devices yourself , write software that will run on this devices you can't do it in Delphi. I suggest you buy an Arduino it's an excellent envoirment for beginners in microcontroller programming.
If you have the source code of your pic microcontroller then you can implement the code in C to read from Serial, USB or some other interface available in your hardware and write it to the eeprom. This way its easy to write the app in any high level language like delphi, c++, etc.
Or you can write your PIC application using the mikropascal compiler from mikroeletronika that its very good and I've been using for a long time, but as you can see you will have to implement some mecanism to read from the interface and write to your eeprom as I've mentioned before.
This compiler comes with a lote of librarys to work with many devices. You should take a look on it, its not free but the price is low and in their site you can find samples and sample boards to test it.
One option, if you want a simple interface to write to the PIC EEPROM, is to use the ICD command line utility. Unfortunately it is not available for the ICD2, but the PICkit 2 and 3 (which are cheap), ICD3, and RealICE have command line utilities that give you the ability to write to the EEPROM (google pk2cmd). In Delphi, you could just wrap a very simple set of command line calls to pk2cmd.

DMX software to control lights with programmable interface

I find myself in the need of a software to control lights with a programmable interface. Basically what I want to do is to automatically control the lights using some criteria that I programmed inside a program. My program will then control the lights passing through the software I'm searching for, of course this would need a programmable interface to which I should pass the commands to control the lights.
I've been searching for a software like that in the last couple of days without success, what I found are only softwares with GUIs for users, but no specification whatsoever about programming the light behavior instead of manipulating it by hand.
There's some really good information & code samples (including a working class that I wrote) here: Lighting USB OpenDMX FTD2XX DMXking
Ultimately, you end up setting byte values (between 0 and 255[FF] (brightest) in a byte array.
It's fairly trivial to implement simple effects such as fades or chases.
If you haven't got that far yet (e.g. up to the code) you'll need to get ahold of a USB DMX controller.
There are a number of them out there, but the thread above has sample code for two different flavours.
I also wanted an environment where I could quickly write code that would create interesting effects for my DMX effect lights and lasers, and ended up creating it myself. I just announced the first public release of Afterglow, my free, open-source live-coding environment for light shows. You can find it at https://github.com/brunchboy/afterglow
I needed precise control of individual mutli-channel (RGBAW) DMX512 lights and wanted to write code in C++ for Windows. I adapted the C# example from Enttec's website for OpenUSB and released the code:
https://github.com/chloelle/DMX_CPP

Emulate GPS or a serial device

Is it possible to get location data out of Google Gears, Google Gelocation API or any other web location API (such as Fire Eagle) in such a format that it appears to other software as a GPS device?
It occured to me reading these answers to my question regarding WiFi location finding, on Super User, that if I could emulate a GPS unit, many of these web services could act as a 'poor-mans' GPS to otherwise less useful software that requires it.
Is GPSD an option?
Preferably OSX & Python, but I would be interested in any implementation.
There is a very similar thread on a Python mailinglist that mentions Windows virtual COM ports and discusses Unix's pseudo-tty capabilities. If the app(s) you want to use let you type in a specific tty device file, this may be the easiest route. (Short of asking the authors to provide a plugin API for what you're trying to do, or buying yourself a $20 bluetooth GPS mouse.)
Are you using OS X?
There is a project macosxvirtualserialport on Google code that provides a graphical wrapper around some of the features of a utility called socat. I'd recommend taking a look at socat if you see potential in the pseudo-tty route. I believe you could use socat to link a pipe from a Python program to a pseudo-tty.
Most native Mac apps will be querying IOServiceMatching for a device with kIOSerialBSDRS232Type, and I doubt that a pseudo-tty will show up as an IOKit service.
In this case, unless you can find a project that has already implemented such a thing, you will need to implement a driver as described in this How to create virtual COM port thread. If you're going to the trouble of create a device driver, you would want to base it on IOKit because of that likely IOServiceMatching query. You can find the Apple16X50Serial project mentioned in that post at the top of Apple's open source code list (go to the main page and pick an older OS release if you want to target something pre-10.6).
If your app is most useful with realtime data (e.g. the RouteBuddy app mentioned in the Python mailinglist thread can log current positions) then you will want to fetch updates from your web sources (hopefully they support long-polling) and convert them to basic NMEA RMC sentences. You do not want to do this from inside your driver code. Instead, divide your work up into kernel-land and user-land pieces that can communicate, and put as little of the code as possible into the kernel part.
If you want to let apps both read and write to these web services, your best bet would probably be to simulate a Garmin device. Garmin has more-or-less documented their protocol in the IntfSpec.pdf file included with their Device Interface SDK. Again, you'd want to split as much as you could into user-space code.
I was unable to find a project or utility that implements the kernel side of an IOKit-based virtual serial interface, but I'd be surprised if there wasn't one hiding somewhere out there. Unfortunately, most of the answers I found to that question were like this, with the developer being told to get busy writing a kext.
I'm not exactly sure how to accomplish what you're asking, but I may be able to lend some insight as to how you might begin to get it done. So here goes:
A GPS device shows up to most systems as nothing more than a serial device -- a.k.a. a COM port if you're dealing with Windows, /dev/ttySx if you're in *nix. By definition, a serial port's specific duty is to stream data across a bus, one block at a time. So, it would then follow logically that if you want to emulate the presence of a GPS device, you should gather the data you're consuming and put it into a stream that somehow acts like an active serial port.
There are, however, some complications you might want to consider:
Most GPS devices don't just send out location data; there's also information on satellite locations, fix quality, bearing, and so on. Then again, nobody's made any rules saying you have to make all that data available. There's probably more to this, but I'll admit that I need to do more research in this area myself.
I'm not sure how fast you can receive data when dealing with Google Latitude, etc., but any delays in receiving would definitely result in visible pauses in your "serial port"'s data stream. Again, this may not be as big a complication as it seems, because GPS devices are known to "burst" data across the bus anyway, but I'd definitely keep an eye on that. You want to make sure there's always a surplus of data coming across, not a shortage.
Along the way you'll also have to transform the coordinates you receive into valid GPS sentences, as well. You can find specifications for those, but I would definitely make friends with the NMEA standard -- even though it is a flawed standard, it's the one everyone seems to agree on anyway.
Hope this helped you, at least a little bit. Are there anymore details specific to your problem that you think could be useful in answering this question?
Take a look to Franson GPS Gate which allows you to connect to Google Earth among other things (like simulating GPS and so on). Is windows only though but I think you could get some useful ideas from it.
I haven't looked into it very much, but have you considered using Skyhook's SDK? It might provide you with some of what you are looking for. It's available for every major desktop and mobile OS.

Resources