Micropython on ESP8266 creates files with null character in name - esp8266

I'm a raw beginner working with an ESP8266.
I created a file main.py containing this code:
f = open( 'f.dat', 'w')
print( 'a', file=f )
f.close()
When I run
ampy -pCOM3 put main.py main.py
main.py runs immediately, and creates 128 files with the same name, which is 8 null characters before the dot and 3 null characters after.
Running
ampy -pCOM3 ls
displays 128 lines of " . "
and from a terminal emulator,
os.listdir()
shows this 128 times:
'\x00\x00\x00\x00\x00\x00\x00\x00.\x00\x00\x00'
Can anyone explain what's happening, and how to prevent it? and tell me how to delete the files?

Instead of this:
print( 'a', file=f )
... try this:
f.write('a')
...based on information found here.

Related

How to split paired-end fastq files?

I have Illumina paired-end reads contained within one .fastq file, denoted as '/1' for forward reads and '/2' for reverse reads.
I am using grep to pull out the individual reads and place them into 2 respective files (one for forward reads and one for reverse.
grep -A 3 "/1$" sample21_pe.unmapped.fq > sample21_1_rfa.fq
grep -A 3 "/2$" sample21_pe.unmapped.fq > sample21_2_rfa.fq
However, when I try to use the files (fastqc, assembly, etc), they do not work. When running
fastqc i get the following error:
Failed to process file sample21_1_rfa.fq
uk.ac.babraham.FastQC.Sequence.SequenceFormatException: ID line didn't start with '#'
at uk.ac.babraham.FastQC.Sequence.FastQFile.readNext(FastQFile.java:134)
at uk.ac.babraham.FastQC.Sequence.FastQFile.next(FastQFile.java:105)
at uk.ac.babraham.FastQC.Analysis.AnalysisRunner.run(AnalysisRunner.java:76)
at java.lang.Thread.run(Thread.java:662)
But, if you look at the files they identifier does indeed start with an '#'. Any advice on why these files aren't working? I had originally converted .bam files into the .fastq files with
samtools bam2fq
Here are samples of each individual file:
merged .fastq
#HISEQ:534:CB14TANXX:4:1101:1091:2161/1
GAGAAGCTCGTCCGGCTGGAGAATGTTGCGCTTGCGGTCCGGAGAGGACAGAAATTCGTTGATGTTAACGGTGCGCTCGCCGCGGACGCTCTTGATGGTGACGTCGGCGTTGAGCGTGACGCACG
+
B/</<//B<BFF<FFFFFF/BFFFFFFB<BFFF<B/7FFF7B/B/FF/F/<<F/FFBFFFBBFFFBFB/FF<BBB<B/B//BBFFFFFFF/B/FF/B77B//B7B7F/7F###############
#HISEQ:534:CB14TANXX:4:1101:1091:2161/2
TGACGCCTGCCGTCAGGTAGGTTCTCCGCAGATCCGAAATCTCGCGACGCTCGGCGGCAACATCTGCCAGTCGTCCGTGGCGGGCGACGGTCTCGCGGCGTGCGTCACGCTCAACGCCGACGTAC
+
/B<B//F/F//B<///<FB/</F<<FFFFF<FFBF/FF<//FB/F//F7FBFFFF/B</7<F//<BB7/7BB7/B<F7BF<BFFFB7B#####################################
#HISEQ:534:CB14TANXX:4:1101:1637:2053/1
NGTTTACCATACAACAATCTTGCGACCTATTCAAATCATCTATATGCCTTATCAAGTTTTCATAGCTTTCAAGATTCTCAATTTCCTCACGTCTCGCTTTGCTCAACCTACAAAAACTCTCTTCT
+
#<<BBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFFFFFFFFFFFB/BFBBFBB<<<<FFFFFFBB<FBFFBFF
#HISEQ:534:CB14TANXX:4:1101:1637:2053/2
TCGGTCGTTGGGAAAAGACCTGTGGTAAACATCCTACGCAAAAGCCATTGCGGTTACTCGTTCGTATGATTCTTGCATCAACTAATCAAGGCGATTGGGTTCTCGACCCATTTTGTGGAAGTTCG
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFBFFFFFB<FF<<BBFB
#HISEQ:534:CB14TANXX:4:1101:1792:2218/1
TCTATCGGCTGACCGATAAGCTGTCGCCTGCCGACCGTCCTGCCATGGGACGGCGCATCGCACAGCTCACCCTGGACTAACTCTCCAACACCATGATGCTGACACGCTCGGCAAAAACACCCGAT
+
<<B/<B</FF/<B/<//F<//FF<<<FF//</7/F<</FFF####################################################################################
#HISEQ:534:CB14TANXX:4:1101:1792:2218/2
TGCCGGAGGGCGTCGATGGTGGCATCGAGCTTTTTTGCCGAGCGTGTCAGCATGATGGTGTTGTAGAGATAGTCCATGGTGAGCTGTGCGATGCGCCGTTCCATGGCAGGACGGTCGGCAGGCGC
+
BBBBBFFFFFFFFBFFFBBFFFFFFFFFFFBBFFFF/FF<F7FF//F/FBB/FFBFFF/F7BFF<F/FFFFFFFFB/7BB<7BFFFFFFFFFFFFF<B///B/7B/7/B//77BB//7B/B7/B#
#HISEQ:534:CB14TANXX:4:1101:1903:2238/1
TATTCCAGCGACCGTTATAATCAAACTCAACTACATAGTCATTGCGGATTGCTTCAAGAAATTTTTTCCAGACTATTTCATCAATATTTATTTTGGGAACTGGTGCAACAGCAATTCTTTTTAAA
+
BBBBBFFFFFFFFFFFFFBFF/FFBFFBFFFFFFFF/FFFFFF<<FFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFBF/B/<B<B/FBF7/<FFFFFFF/BB/7///7FF<BFFF//B/FFF###
#HISEQ:534:CB14TANXX:4:1101:1903:2238/2
TAAGGTTGGAGAAGCAACAATTTACCGTGATATTGATTTGCTCCGAACATATTTTCATGCGCCACTCGAGTTTGACAGGGAGAAAGGCGGGTATTATTATTTTAATGAAAAATGGGATTTTGCCC
+
B<BBBFFFFFFF<FFFFFFFFFFFFFFFFFF/BFFFFFFF<<FF<F<FFF/FF/FFFFBFB</<//<B/////<<FFFFB/<F<BFF/7/</7/7FB/B/BFF<//7BFF###############
#HISEQ:534:CB14TANXX:4:1101:2107:2125/1
TGTAGTATTTATTACATCATATAGAATGTAGATATAAAAGATGAAAAAGCTATAATTTCTTTGATAATATAAGGAGGGAATAACACTATGAGGATTGATAGAGCAGGAATCGAGGATTTGCCGAT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFF/FFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBFFFFFFFBB<FBB7BFF#
#HISEQ:534:CB14TANXX:4:1101:2107:2125/2
TACCACTATCGGCAAATCCTCGATTCCTGCTCTATCAATCCTCATAGTGTTATTCCCTCCTTATATTATCAAAGAAATTATAGCTTTTTCATCTTTTATATCTACATTCTATATGATGTAATAAA
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFFBFBFFFFFFFBBFFFFFFFBF7F/B/BBF7/</FF/77F/77BB#
#HISEQ:534:CB14TANXX:4:1101:2023:2224/1
TCACCAGCTCGGCACGCTTGTCCTTGACCTCCTGCTCGATCTGACCGTCCATCTTGGCTGCCACGGTGTTCTCCTCGGCGGAGTAGGCAAAGCAGCCCAGACGGTCGAACTGTATCTCCTTGACA
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFB<<B7BBFBFFF<FFBBFFFBF/7B/<B<
#HISEQ:534:CB14TANXX:4:1101:2023:2224/2
TCGAGGATCTGTGCAACTTTGTCAAGGAGATACAGTTCGACCGTCTGGGCTGCTTTGCCTACTCCGCCGAGGAGAACACCGTGGCAGCCAAGATGGACGGTCAGATCGAGCAGGAGGTCAAGGAC
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFBFBFFFFFFFFFFFFFFFFFFFFFFFFFBBFFFFFFFFFFFFF<7BF/<<BB###
#HISEQ:534:CB14TANXX:4:1101:2038:2235/1
TTTATGCGAATGTAGAGTGGCTTCTCCACTGCCTCGGTGAAGCCCACGCGCGAGATGAGCGAATTAAGCTGCTTTGCAGTGAATTGCATTGCATATACACCTGCGTCGGCTTGAATACTTGTGCT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFF//BFFFFFFFFFFFFF<B<BB###
#HISEQ:534:CB14TANXX:4:1101:2038:2235/2
AATCCGCTCGTGAAAGCTCCCGATAACGCCACAGTGAACACCGTGGAGTTCTCTGATACCGAAGATTTCGCACGCAGCACAAGTATTCAAGCCGACGCAGGTGTATATGCAATGCAATTCACTGC
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBBFFFFFFFFFFFFFFFFFFFFFFF
#HISEQ:534:CB14TANXX:4:1101:2271:2041/1
NACACTTGTCGATGATCTTGCCAAGCTGCTTCTTGCCCACCAGGAAGCCGATCTCCAGATCAAACTCGTGGCCGGGAACACTCCGGTCCACAAAGCCCAGGTCCTGGGGAATGGGCTCATCGTAG
+
#<</BB/F/BB/F<FFFFFFFFF/<BFFFFFFFF<<FFBFFFFFFBFBFBBB<<FFFFBFFF/<B/FFFFFFFFFFFFFFFFF<FB<<BFF77BFFF/<BFFFB<</BB</7BFFFB########
#HISEQ:534:CB14TANXX:4:1101:2271:2041/2
GACTCATCTACAATGAGCCCATTCCCCAGGACCTGGGCTTTGTGGACCGGAGTGTTCCCGGCCACGAGTTTGATCTGGAGATCGGCTTCCTGGTGGGCAAGAAGCAGCTTGGCAAGATCATCGCC
+
<<BBBFFF<F/BFFFBFBF<BFF<<F/FFFBFFFF<<FFFFBFFFFFFBFFF/<B<F/<</<FFF//FFFFF/<<F/B/B/7/FF<<FF/7B/BBB/7///7////<B/B/BB/B/B/B/7BB##
Example of forward reads after being pulled out and placed into their own .fastq file:
#HISEQ:534:CB14TANXX:4:1101:1091:2161/1
GAGAAGCTCGTCCGGCTGGAGAATGTTGCGCTTGCGGTCCGGAGAGGACAGAAATTCGTTGATGTTAACGGTGCGCTCGCCGCGGACGCTCTTGATGGTGACGTCGGCGTTGAGCGTGACGCACG
+
B/</<//B<BFF<FFFFFF/BFFFFFFB<BFFF<B/7FFF7B/B/FF/F/<<F/FFBFFFBBFFFBFB/FF<BBB<B/B//BBFFFFFFF/B/FF/B77B//B7B7F/7F###############
--
#HISEQ:534:CB14TANXX:4:1101:1637:2053/1
NGTTTACCATACAACAATCTTGCGACCTATTCAAATCATCTATATGCCTTATCAAGTTTTCATAGCTTTCAAGATTCTCAATTTCCTCACGTCTCGCTTTGCTCAACCTACAAAAACTCTCTTCT
+
#<<BBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFFFFFFFFFFFB/BFBBFBB<<<<FFFFFFBB<FBFFBFF
--
#HISEQ:534:CB14TANXX:4:1101:1792:2218/1
TCTATCGGCTGACCGATAAGCTGTCGCCTGCCGACCGTCCTGCCATGGGACGGCGCATCGCACAGCTCACCCTGGACTAACTCTCCAACACCATGATGCTGACACGCTCGGCAAAAACACCCGAT
+
<<B/<B</FF/<B/<//F<//FF<<<FF//</7/F<</FFF####################################################################################
--
#HISEQ:534:CB14TANXX:4:1101:1903:2238/1
TATTCCAGCGACCGTTATAATCAAACTCAACTACATAGTCATTGCGGATTGCTTCAAGAAATTTTTTCCAGACTATTTCATCAATATTTATTTTGGGAACTGGTGCAACAGCAATTCTTTTTAAA
+
BBBBBFFFFFFFFFFFFFBFF/FFBFFBFFFFFFFF/FFFFFF<<FFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFBF/B/<B<B/FBF7/<FFFFFFF/BB/7///7FF<BFFF//B/FFF###
--
#HISEQ:534:CB14TANXX:4:1101:2107:2125/1
TGTAGTATTTATTACATCATATAGAATGTAGATATAAAAGATGAAAAAGCTATAATTTCTTTGATAATATAAGGAGGGAATAACACTATGAGGATTGATAGAGCAGGAATCGAGGATTTGCCGAT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFF/FFFFFFFFFFFFFFFFFFFFFFFFFFFFBBBFFFFFFFBB<FBB7BFF#
--
#HISEQ:534:CB14TANXX:4:1101:2023:2224/1
TCACCAGCTCGGCACGCTTGTCCTTGACCTCCTGCTCGATCTGACCGTCCATCTTGGCTGCCACGGTGTTCTCCTCGGCGGAGTAGGCAAAGCAGCCCAGACGGTCGAACTGTATCTCCTTGACA
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFFFFFFFFB<<B7BBFBFFF<FFBBFFFBF/7B/<B<
--
#HISEQ:534:CB14TANXX:4:1101:2038:2235/1
TTTATGCGAATGTAGAGTGGCTTCTCCACTGCCTCGGTGAAGCCCACGCGCGAGATGAGCGAATTAAGCTGCTTTGCAGTGAATTGCATTGCATATACACCTGCGTCGGCTTGAATACTTGTGCT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFF//BFFFFFFFFFFFFF<B<BB###
--
#HISEQ:534:CB14TANXX:4:1101:2271:2041/1
NACACTTGTCGATGATCTTGCCAAGCTGCTTCTTGCCCACCAGGAAGCCGATCTCCAGATCAAACTCGTGGCCGGGAACACTCCGGTCCACAAAGCCCAGGTCCTGGGGAATGGGCTCATCGTAG
+
#<</BB/F/BB/F<FFFFFFFFF/<BFFFFFFFF<<FFBFFFFFFBFBFBBB<<FFFFBFFF/<B/FFFFFFFFFFFFFFFFF<FB<<BFF77BFFF/<BFFFB<</BB</7BFFFB########
--
#HISEQ:534:CB14TANXX:4:1101:2678:2145/1
CTGTACATAGTACGTATTTGACGCCTGCGTCGATGTAGCGTTTGAGGAAGGGAAGCAGCGGTTCTGCAGAGTCCTCTTTCCATCCGTTGATGCTAATCATTCCGTTGCGTACATCCGCTCCGAGA
+
BBBBBFFFFFFF<FFF<FFFFFFFFBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<BFFF7BFFFFFFFF<BBFFFFFFFFBBFBBB<FFBFFFFFFFFFFFFB<BFFFFFFBFB/BFFF####
--
#HISEQ:534:CB14TANXX:4:1101:2972:2114/1
CTCTGTGCCGATCCCTTTGCCTTTGCGTTTTGAGGAAAGGAAACCACCTTCTGGGTCGGTGAGGATAGTTCCGGTGAAGGTGTTGTCCACCGCCAGGCATAGGGAATAGCTGTCAGCCTTTGCTC
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFB/FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFBFFFF<FFFFFFFFFF<BFFFFF
--
#HISEQ:534:CB14TANXX:4:1101:2940:2222/1
CTAATTTTTTCATTATATTACTAATTTTGTAATTGGTAAAATATTATAATATCCTTGTACATTAAGACCCCAATAATCAGAAGAAGTAAAATTAATTCCTGCAACAGTTCTTAAATATCCATTAG
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFF<FBFFFFFFFFFFFFFFF/FBFBFFBFFFFF/<F<FFFFFFFFFF<FFFFFFBFFFFFFFFF</FBFBBF<F/7//FFBFBBFFF/<7BF#
--
#HISEQ:534:CB14TANXX:4:1101:3037:2180/1
CGTCAGTTCCGCAACGATAAAGAGTTCCGCATTGCAGTCACCTGTACGCTGGTAGCCACCGGAACCGATGTCAAGCCGTTGGAGGTGGTGATGTTCATGCGCGACGTAGCTTCCGAGCCGTTATA
+
B/BBBBBFFFFFFF<FFBFFFFFF<FFFFBFFFFFFF<BBFFFFFFFFFFFFFFFFFBFF/FFFFBFFBFFFFBFF/7F/BFB/BBFFFFFFFFBFF<BBF<7BBFFFFFFBBFFF/B#######
--
#HISEQ:534:CB14TANXX:4:1101:3334:2171/1
ACCGATGTACATACCCGGACGGGTACGCACATGCTCCATATCGCTCAAGTGGCGGATATTGTCATCTGTATATTCTACAGGTTGCTCCTGAGGGGTATTTGCCAGTTCTTCGGCAGCACCCTTTT
+
BBBBBFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFFFFFFBFFFFFFFFFFFBFFFFFFFFFF</<BFFFFFFFFBBFFFFFFBF</BB///BF<FFFFF<</<B
--
#HISEQ:534:CB14TANXX:4:1101:3452:2185/1
CGCAGACGGATTTGCTTGAAGTCCGTCTCATCGTATTCCGACAACTCATCGAGGAACACACGCTTGTATTGACTGATACCCTTGATTTTCTCCGGGTCGTCAAGACCACTGAAATCAATCTTGCC
+
BBBBBFFFF<FFFFFFFFFFFFFFFFFFFFFFFFFFF<FFFFFBFFFFFFFFFFFFFFFFFFFFBFFFFFFFFFFBFFFFFBFFBFFFFFFFFFB/77B/FBBFFF/<FFF/77BBFFFBFFBBB
--
Any advice would be appreciated. Thanks!
In general, this operation is called deinterlace fastq or deinterleave fastq. The question already has the answer here:
deinterleave fastq file
https://www.biostars.org/p/141256/
I am copying it here, with minor reformatting for clarity:
paste - - - - - - - - < interleaved.fq \
| tee >(cut -f 1-4 | tr "\t" "\n" > read1.fq) \
| cut -f 5-8 | tr "\t" "\n" > read2.fq
This command converts the interlaced fastq file into 8-column tsv file, cuts columns 1-4 (read 1 lines), changes from tsv to fastq format (by replacing tabs with newlines) and redirects the output to read1.fq. In the same STDOUT stream (for speed), using tee, it cuts columns 5-8 (read 2 lines), etc, and redirects the output to read2.fq.
You can also use these command line tools:
iamdelf/deinterlace: Deinterlaces paired-end FASTQ files into first and second strand files.
https://github.com/iamdelf/deinterlace
deinterleave FASTQ files
https://gist.github.com/nathanhaigh/3521724
Or online tools with Galaxy web UI, for example this tool: "FASTQ splitter on joined paired end reads", installed on several public Galaxy instances, such as https://usegalaxy.org/ .
Avoid using a regex for simple fastq file parsing if you can use line numbers, both for speed (pattern matching is slower than simple counting) and for robustness.
Highly unlikely, but a pattern like ^#.*/1$ (or whatever the readers might change it to, while reusing this code later) can match also the base quality line. A good general rule is to simply rely on fastq spec, which says 4 lines per record.
Note that #, /, 1, and 2 characters are allowed in Illumina Phred scores: https://support.illumina.com/help/BaseSpace_OLH_009008/Content/Source/Informatics/BS/QualityScoreEncoding_swBS.htm .
A one-liner that pulls out such (admittedly, very rare) reads is left as an exercise to the reader.
The fastq format uses 4 lines per read.
Your snippet has 5, as there are -- lines. That could cause confusion to softwares expecting a 4 line format.
You can add --no-group-separator to the grep call to avoid adding that separator.
I usually follow these steps to convert bam to fastq.gz
samtools bam2fq myBamfile.bam > myBamfile.fastq
cat myBamfile.fastq | grep '^#.*/1$' -A 3 --no-group-separator > sample_1.fastq
cat myBamfile.fastq | grep '^#.*/2$' -A 3 --no-group-separator > sample_2.fastq
gzip sample_1.fastq
gzip sample_1.fastq
Once you have the two files, you should order them to be sure that the reads are really paired.
We can split FASTQ files using Seqkit.
seqkit split2 -p 2 sample21_pe.unmapped.fq
https://bioinf.shenwei.me/seqkit/usage/#split2
Example 4 will help this question.
I'm not sure if it recognize the read ID. It split and write alternately into 1st-output-file and 2nd-output-file.

gawk grep piping redirection to output file not working

I have this file.txt:
a b c
a f g
e h j
I wrote an awk script that does
BEGIN {...}
{...}
END {
a = "a"
b = "b"
system("grep " a " file.txt | grep " b " > t")
}
I expect it to print a b c in file t. Running the same script from ConEmu on Windows 7 will produce an empty t file. On the other hand, executing grep a file.txt | grep b > t will produce the expected result.
why am I doing so: I'm parsing obscure data from a complicated file with multiple field separators (or nested fields, if you prefer). After having the structure of the input file (which is not file.txt), since each line is a command that will be executed and their order is important to me, I would like to know if something is set to something else and if that is a condition for a new command to be introduced in the input file using awk. The condition file database is file.txt.
Why is that? Am I doing something wrong? Am I blind somehow? On Windows 7, gawk 4.2.0, (GNU) grep 2.4.2
I'm also unable to locate similar questions that might help: if you know any, do flag this as duplicate.
Since my goal was to achieve redirection of grep output to file from an awk script, and since the system() way did not work, I found this morning that:
BEGIN {...}
{...}
END {
a = "a"
b = "b"
ask = "grep " a " file.txt | grep " b
while (ask | getline _foo) {
print _foo > "dump.txt"
}
close(ask)
}
works just fine. As a bonus, I can do stuff with each line returned by grep. Again, this is working in Windows 7 using gawk 4.2.0 and ConEmu.

How can I tail -F a log file(truncate aware) in lua?

I'd like to make the output of tailf or tail -F, or something similar available to me in Lua without blocking or locking. If the file gets truncated or log rotated, the program will detect it and will return to the start. This seems to be a level 1 question but looks strange to me. I just can't figure it out. Does anyone could share some code?
Two ideas come to mind, you can just pipe the output of tail -F directly into your script execution. From there you can just read it in from stdin. Perhaps something like this:
local c = 0
for line in io.stdin:lines() do
c = c + 1
print(c, line)
end
A problem with this is that tail uses stderr to report file truncation so the script won't see it unless you find some way to redirect stderr to stdin.
The other idea is to use io.popen and force the stderr->stdin redirection before the main loop. You can then use any standard pattern matcher to check for tail truncation.
local tailin = io.popen('tail -F '..(...)..' 2>&1', 'r')
local c = 0
for line in tailin:lines() do
c = c + 1
print(c, line)
c = line:match 'truncated' and 0 or c
end
Note that both approaches are blocking btw.

GNU-M4: Strip empty lines

How can I strip empty lines (surplus empy lines) from an input file using M4?
I know I can append dnl to the end of each line of my script to suppress the newline output, but the blank lines I mean are not in my script, but in a data file that is included (where I am not supposed to put dnl's).
I tried something like that:
define(`
',`')
(replace a new-line by nothing)
But it didn't work.
Thanks.
I use divert() around my definitions :
divert(-1) will suppress the output
divert(0) will restore the output
Eg:
divert(-1)dnl output supressed starting here
define(..)
define(..)
divert(0)dnl normal output starting here
use_my_definitions()...
I understand your problem to be a data file with extra line breaks, meaning that where you want to have the pattern data<NL>moredata you have things like data<NL><NL>moredata.
Here's a sample to cut/paste onto your command line that uses here documents to generate a data set and runs an m4 script to remove the breaks in the data set. You can see the patsubst command replaces every instance of one or more newlines in sequence (<NL><NL>*) with exactly one newline.
cat > data << -----
1, 2
3, 4
5, 6
7, 8
9, 10
11, 12
e
-----
m4 << "-----"
define(`rmbreaks', `patsubst(`$*', `
*', `
')')dnl
rmbreaks(include(data))dnl
-----

Unable to manipulate a byte array

I'm trying to pass a byte array from inside my rails app into another ruby script (still inside my rails app), for example:
`./app/animations/fade.sh "\x01\x01\x04\x00" &`
Yields ArgumentError (string contains null byte)
I suppose I'm stumped with how I can form this string and than pass it to my script, which will use it in this sort of fashion:
#sp.write ["#{ARGV[0]}", "f", "\x12"]
I'd like to form the string (on my rails app) like this if possible:
led = "\x01#{led.id}\x04\x00"
But I keep getting ArgumentError (string contains null byte) error. Is there a way I can form this string from elements in my rails app, then pass it to my external script?
You should just pass the data in through standard input, not the command line. You can use IO.popen for this purpose:
IO.popen("./app/animations/fade.sh", "w+") do |f|
f.write "\x01\x01\x04\x00"
end
And on the reading side:
input = $stdin.read
#sp.write [input, "f", "\x12"]
(By the way, it's more common to name Ruby scripts .rb instead of .sh; if fade.sh is meant to be a Ruby script, as I assume from the syntax you used in its example contents, you might want to name it fade.rb)
you could use base64 to pass the bytestring around
$ cat > test.sh
echo $1 | base64 -d
$ chmod a+x test.sh
and then from ruby:
irb
>> require 'base64'
=> true
>> `./test.sh "#{Base64.encode64 "\x01\x01\x04\x00"}"`
=> "\x01\x01\x04\x00"
Can your script accept input from STDIN instead? Perhaps using read.
If you can't do this, you could encode your null and escape your encoding.
E.G. 48656c6c6f0020576f726c64 could be encoded as 48656c6c6f200102020576f726c64
which in turn would be decoded again if both sides agree 2020=20 and 2001=00
Update I think encoding is what you'll have to do because I tried using read and it turns out to be a little too difficult. There's probably another option, but I don't see it yet.
Here's my script and two test runs:
dlamblin$ cat test.sh
echo "reading two lines of input, first line is length of second."
read len
read ans
echo "C string length of second line is:" ${#ans}
for ((c=0; c<$len; c++))
do
/bin/echo -n "${ans:$c:1},"
done
echo ' '
exit
dlamblin$ echo -e '12\0012Hello \0040World' | sh test.sh
reading two lines of input, first line is length of second.
C string length of second line is: 12
H,e,l,l,o, , ,W,o,r,l,d,
dlamblin$ echo -e '12\0012Hello \0000World' | sh test.sh
reading two lines of input, first line is length of second.
C string length of second line is: 5
H,e,l,l,o,,,,,,,,
#Octals \0000 \0012 \0040 are NUL NL and SP respectively

Resources