miniKanren F# with FSLogic - f#

Well I'm following a tutorial of miniKanren in scheme using FsLogic, but I just got stuck in this example
(run 1 (q)
(== '(lambda (x) x) '(lambda (x) x)))
And I'm writing it in f# like this:
run 1 (fun q ->
(fun x -> x) *=* (fun x -> x)
)
But it fails (doesn't compile) :(
Reading the tests I tried to use project but it doesn't work either (I'm not really sure what project does yet).....
I'm following this "uncourses" from the minikanren homepage

Related

F# pipe operator confusion

I am learning F# and the use cases of the |>, >>, and << operators confuse me. I get that everything if statements, functions, etc. act like variables but how do these work?
Usually we (community) say the Pipe Operator |> is just a way, to write the last argument of a function before the function call. For example
f x y
can be written
y |> f x
but for correctness, this is not true. It just pass the next argument to a function. So you could even write.
y |> (x |> f)
All of this, and all other kind of operators works, because in F# all functions are curried by default. This means, there exists only functions with one argument. Functions with many arguments, are implemented that a functions return another function.
You could also write
(f x) y
for example. The function f is a function that takes x as argument and returns another function. This then gets y passed as an argument.
This process is automatically done by the language. So if you write
let f x y z = x + y + z
it is the same as:
let f = fun x -> fun y -> fun z -> x + y + z
Currying is by the way the reason why parenthesis in a ML-like language are not enforced compared to a LISP like language. Otherwise you would have needded to write:
(((f 1) 2) 3)
to execute a function f with three arguments.
The pipe operator itself is just another function, it is defined as
let (|>) x f = f x
It takes a value x as its first argument. And a function f as its second argument. Because operators a written "infix" (this means between two operands) instead of "prefix" (before arguments, the normal way), this means its left argument to the operator is the first argument.
In my opinion, |> is used too much by most F# people. It makes sense to use piping if you have a chain of operations, one after another. Typically for example if you have multiple list operations.
Let's say, you want to square all numbers in a list and then filter only the even ones. Without piping you would write.
List.filter isEven (List.map square [1..10])
Here the second argument to List.filter is a list that is returned by List.map. You can also write it as
List.map square [1..10]
|> List.filter isEven
Piping is Function application, this means, you will execute/run a function, so it computes and returns a value as its result.
In the above example List.map is first executed, and the result is passed to List.filter. That's true with piping and without piping. But sometimes, you want to create another function, instead of executing/running a function. Let's say you want to create a function, from the above. The two versions you could write are
let evenSquares xs = List.filter isEven (List.map square xs)
let evenSquares xs = List.map square xs |> List.filter isEven
You could also write it as function composition.
let evenSquares = List.filter isEven << List.map square
let evenSquares = List.map square >> List.filter isEven
The << operator resembles function composition in the "normal" way, how you would write a function with parenthesis. And >> is the "backwards" compositon, how it would be written with |>.
The F# documentation writes it the other way, what is backward and forward. But i think the F# language creators are wrong.
The function composition operators are defined as:
let (<<) f g x = f (g x)
let (>>) f g x = g (f x)
As you see, the operator has technically three arguments. But remember currying. When you write f << g, then the result is another functions, that expects the last argument x. Passing less arguments then needed is also often called Partial Application.
Function composition is less often used in F#, because the compiler sometimes have problems with type inference if the function arguments are generic.
Theoretically you could write a program without ever defining a variable, just through function composition. This is also named Point-Free style.
I would not recommend it, it often makes code harder to read and/or understand. But it is sometimes used if you want to pass a function to another
Higher-Order function. This means, a functions that take another function as an argument. Like List.map, List.filter and so on.
Pipes and composition operators have simple definition but are difficult to grasp. But once we have understand them, they are super useful and we miss them when we get back to C#.
Here some explanations but you get the best feedbacks from your own experiments. Have fun!
Pipe right operator |>
val |> fn ≡ fn val
Utility:
Building a pipeline, to chain calls to functions: x |> f |> g ≡ g (f x).
Easier to read: just follow the data flow
No intermediary variables
Natural language in english: Subject Verb.
It's regular in object-oriented code : myObject.do()
In F#, the "subject" is usually the last parameter: List.map f list. Using |>, we get back the natural "Subject Verb" order: list |> List.map f
Final benefit but not the least: help type inference:
let items = ["a"; "bb"; "ccc"]
let longestKo = List.maxBy (fun x -> x.Length) items // ❌ Error FS0072
// ~~~~~~~~
let longest = items |> List.maxBy (fun x -> x.Length) // ✅ return "ccc"
Pipe left operator <|
fn <| expression ≡ fn (expression)
Less used than |>
✅ Small benefit: avoiding parentheses
❌ Major drawback: inverse of the english natural "left to right" reading order and inverse of execution order (because of left-associativity)
printf "%i" 1+2 // 💥 Error
printf "%i" (1+2) // With parentheses
printf "%i" <| 1+2 // With pipe left
What about this kind of expression: x |> fn <| y ❓
In theory, allow using fn in infix position, equivalent of fn x y
In practice, it can be very confusing for some readers not used to it.
👉 It's probably better to avoid using <|
Forward composition operator >>
Binary operator placed between 2 functions:
f >> g ≡ fun x -> g (f x) ≡ fun x -> x |> f |> g
Result of the 1st function is used as argument for the 2nd function
→ types must match: f: 'T -> 'U and g: 'U -> 'V → f >> g :'T -> 'V
let add1 x = x + 1
let times2 x = x * 2
let add1Times2 x = times2(add1 x) // 😕 Style explicit but heavy
let add1Times2' = add1 >> times2 // 👍 Style concise
Backward composition operator <<
f >> g ≡ g << f
Less used than >>, except to get terms in english order:
let even x = x % 2 = 0
// even not 😕
let odd x = x |> even |> not
// "not even" is easier to read 👍
let odd = not << even
☝ Note: << is the mathematical function composition ∘: g ∘ f ≡ fun x -> g (f x) ≡ g << f.
It's confusing in F# because it's >> that is usually called the "composition operator" ("forward" being usually omitted).
On the other hand, the symbols used for these operators are super useful to remember the order of execution of the functions: f >> g means apply f then apply g. Even if argument is implicit, we get the data flow direction:
>> : from left to right → f >> g ≡ fun x -> x |> f |> g
<< : from right to left → f << g ≡ fun x -> f <| (g <| x)
(Edited after good advices from David)

constraining type in Seq.scan

I am not sure why this happens
//fine, type of xs is Set<int>
let e = Seq.scan (fun xs x -> Set.add x xs) Set.empty [1..2]
//bad, type of xs is Set<obj>, no type check no good
let e = Seq.scan (fun(xs:Set<_>) x -> Set.add x xs) Set.empty [1..2]
Must be my eyes but what gives ?
As precised in the comment, I was opening the namespace of some other library further up in my file.
Being a C# library, it redefines its own Set (poor folks)
Doing so, writing Set<_> induced the compiler in picking up their version, whilst Set.add still refered to the trusted FSharp Set<_>.
Eventually, the two came in brutal head to head conflict with each other.

Composing 2 (or n) ('a -> unit) functions with same arg type

Is there some form of built-in / term I don't know that kinda-but-its-different 'composes' two 'a -> unit functions to yield a single one; e.g.:
let project event =
event |> logDirections
event |> stashDirections
let dispatch (batch:EncodedEventBatch) =
batch.chooseOfUnion () |> Seq.iter project
might become:
let project = logDirections FOLLOWEDBY stashDirections
let dispatch (batch:EncodedEventBatch) =
batch.chooseOfUnion () |> Seq.iter project
and then:
let dispatch (batch:EncodedEventBatch) =
batch.chooseOfUnion () |> Seq.iter (logDirections FOLLOWEDBY stashDirections)
I guess one might compare it to tee (as alluded to in FSFFAP's Railway Oriented Programming series).
(it needs to pass the same arg to both and I'm seeking to run them sequentially without any exception handling trickery concerns etc.)
(I know I can do let project fs arg = fs |> Seq.iter (fun f -> f arg) but am wondering if there is something built-in and/or some form of composition lib I'm not aware of)
The apply function from Klark is the most straightforward way to solve the problem.
If you want to dig deeper and understand the concept more generally, then you can say that you are lifting the sequential composition operation from working on values to work on functions.
First of all, the ; construct in F# can be viewed as sequential composition operator. Sadly, you cannot quite use it as one, e.g. (;) (because it is special and lazy in the second argument) but we can define our own operator instead to explore the idea:
let ($) a b = a; b
So, printfn "hi" $ 1 is now a sequential composition of a side-effecting operation and some expression that evaluates to 1 and it does the same thing as printfn "hi"; 1.
The next step is to define a lifting operation that turns a binary operator working on values to a binary operator working on functions:
let lift op g h = (fun a -> op (g a) (h a))
Rather than writing e.g. fun x -> foo x + bar x, you can now write lift (+) foo bar. So you have a point-free way of writing the same thing - just using operation that works on functions.
Now you can achieve what you want using the lift function and the sequential composition operator:
let seq2 a b = lift ($) a b
let seq3 a b c = lift ($) (lift ($) a b) c
let seqN l = Seq.reduce (lift ($)) l
The seq2 and seq3 functions compose just two operations, while seqN does the same thing as Klark's apply function.
It should be said that I'm writing this answer not because I think it is useful to implement things in F# in this way, but as you mentioned railway oriented programming and asked for deeper concepts behind this, it is interesting to see how things can be composed in functional languages.
Can you just apply an array of functions to a given data?
E.g. you can define:
let apply (arg:'a) (fs:(('a->unit) seq)) = fs |> Seq.iter (fun f -> f arg)
Then you will be able to do something like this:
apply 1 [(fun x -> printfn "%d" (x + 1)); (fun y -> printfn "%d" (y + 2))]

Tailcalls in Mono

I have some code in F# that works fine under .net but overflows the stack under Mono. A related issue is that it seems to do so long before the stack space supposedly available to it runs out (it is started with System.Threading.Thread (ts, 1000000000)). As far as I can tell, the fold it dies in is tail-recursive and the stack trace looks as if tail-optimization is not being done. I am running 3.2.1 with --optimize=tailc.
Does somebody please know exactly what kinds of tail calls remove the calling stack and which do not? Or alternatively how to allocate more stack? Many thanks.
I am aware of Tailcall elimination in Mono
EDIT: here is an outline of the code as requested in the comments. It is a part of a fold over a large data structure, but the failing stacktrace has just mapk and myfold on it.
let rec myfold f x k =
let rec mapk xs k =
match xs with
[] -> k []
| x::xs -> mapk xs (fun xs' -> myfold f x (fun x' -> (x' :: xs') |> k))
...
mapk (...) ( ... >> k)
As far as I know, --optimize=tailc isn't a supported F# compiler flag.
I don't think there's a way to enable/disable tailcall-optimization support in Mono (from the command-line, anyway); the F# compiler flag to enable tail-call optimizations is --tailcalls+, but according to Compiler Options (F#) that's on by default.
I think your best choices to get this resolved are:
File a bug report with Xamarin
Go on the #monodev IRC channel (on irc.gnome.org) and see if one of the developers/contributors there can help you out.

F# treating operators as functions

In F#, is there a way to treat an operator as a function? In context, I'd like to partially apply operators (both infix and prefix), but the compiler only seems happy to partially apply functions.
Example:
Instead of being able to write List.map (2 **) [0..7];; I have to define my own function pow x y (and then another function let swap f x y = f y x;; because the compiler won't let me partially apply |> either, as in List.map (|> pow 2) [0..7];;.) In the end, my code needs to be List.map (swap pow 2) [0..7];; to work.
I would just do:
[0..7] |> List.map (fun n -> pown n 2)
Or, if 2 is the base:
[0..7] |> List.map (pown 2)
This works too:
[0.0..7.0] |> List.map (( ** ) 2.0)
There are no 'operator sections' a la Haskell; use a lambda to partially apply operators, e.g.
(fun x -> x - 10)
You can partially apply the first argument if you make an infix operator be prefix by surrounding it in parens, e.g.
(fun x -> 10.0 / x)
and
((/) 10.0)
mean the same thing.

Resources