Tensorflow: Use case for determining a dose of medication - machine-learning

I'm new to machine learning and trying to figure out where to start and how to apply it to my app.
My app is pulling a bunch of health metrics and based on all of them is suggesting a dose of medication (some abstract medication, doesn't matter) to take. Taking a medication is affecting health metrics and I can see if my suggestion was right of if it needs adjustments to be more precise the next time. Medications are being taken constantly so I have a lot of results and data to work with.
Does that seem like a good case for machine learning and using some of neural networks to train and make better predictions? If so - could you recommend an example for Tensorflow or Keras?
So far I only found image recognition examples and not sure how to apply similar algorithms to my problem.

I'm also a beginner into machine learning, but based on my knowledge, one way would be to use supervised learning with Keras, which uses Tensorflow as a backend. Keras is a lot easier to program than Tensorflow, but eventually Tensorflow might as well do the trick (depending on your familiarity with machine learning libraries).
You mentioned that your algorithm suggests medication based on data (from the patient).
One way to predict medication is to store all your preexisting data in a CSV file, and use the CSV module to read it. This tutorial covers the basics of reading CSV files (https://pythonprogramming.net/reading-csv-files-python-3/).
Next, you can store the data in a multi-dimensional array, and run a neural network through it. Just make sure that you have sufficiently enough data (the more the better) in comparison with the size of your neural network.
Another way, as you mentioned, would be using Convolutional Neural Networks, which theoretically could and should work, but I have very little experience programming them, so I'm afraid I can't give you any advice for that (you can program CNNs in both Keras and Tensorflow).
I do wish you good luck in your project!

Related

What is the term for using a Neural Network to create new data based on training data?

I have a large set of Training data which consists of various texts. They should be the input for my neural network. I have no output, or I don't know what to put as output.
Anyway, after the learning phase I want the neural network to create new texts based on the training data.
I read about this like „I made a bot watch 1000 hours of xy and asked it to write a new xy“.
Now my question is, what kind of machine learning is this? I am not looking for instructions on how to write it, but just a hint on how to find some keywords or tutorials. My Google searches so far were useless.
Your problem can usually be solved by an Encoder-Decoder architecture. This architecture would learn a set of latent vectors from your input, then try to output in whatever form you want. This architecture can be built with RNN, LSTM or CNN. Nowadays, attention-based models like transformers are more common among the big names. If you want to do text generation, you can start by reading about Generative Adversarial Networks (GANs).

Transfer Learning for small datasets of structured data

I am looking to implement machine learning for a problems that are built on small data sets related to approvals of expenses in a specific supply chain domain. Typically labelled data is unavailable
I was looking to build models in one data set that I have labelled data and then use that model developed in similar contexts- where the feature set is very similar, but not identical. The expectation is that this allows the starting point for recommendations and gather labelled data in the new context.
I understand this is the essence of Transfer Learning. Most of the examples I read in this domain speak of image data sets- any guidance how this can be leveraged in small data sets using standard tree-based classification algorithms
I can’t really speak to tree-based algos, I don’t know how to do transfer learning with them. But, for deep learning models, the customary method for transfer learning is to load up a pretrained model, then retrain the last layer of the dataset using your new data, and then fine-tune the rest of the network.
If you don’t have much data to go on, you might look into creating synthetic data.
raghu, I believe you are looking for a kernel method when you are saying abstraction layer in deep learning. There are several ML algorithms that support kernel functions. With kernel functions, you might be able to do it; but using kernel functions might be more complex than solving your original problem. I would lean toward Tdoggo's suggestion of using Decision Tree.
Sorry, I want to add a comment, but they won't allow me, so I posted a new answer.
Ok with tree-based algos you can do just what you said: train the tree on one dataset and apply it to another similar dataset. All you would need to do is change the terms/nodes on the second tree.
For instance, let’s say you have a decision tree trained for filtering expenses for a construction company. You will outright deny any reimbursements for workboots, because workers should provide those themselves.
You want to use the trained tree on your accounting firm, and so instead of workboots, you change that term to laptops, because accountants should be buying their own.
Does that make sense, and is that helpful to you?
After some research, we have decided to proceed with random forest models with the intuition that trees in the original model that have common features will form the starting point for decisions.
As we gain more labelled data in the new context, we will start replacing the original trees with new trees that comprise of (a)only new features and (b) combination of old and new features
This has worked to provide reasonable results in initial trials

Simple machine learning for website classification

I am trying to generate a Python program that determines if a website is harmful (porn etc.).
First, I made a Python web scraping program that counts the number of occurrences for each word.
result for harmful websites
It's a key value dictionary like
{ word : [ # occurrences in harmful websites, # of websites that contain these words] }.
Now I want my program to analyze the words from any websites to check if the website is safe or not. But I don't know which methods will suit to my data.
The key thing here is your training data. You need some sort of supervised learning technique where your training data consists of website's data itself (text document) and its label (harmful or safe).
You can certainly use the RNN but there also other natural language processing techniques and much faster ones.
Typically, you should use a proper vectorizer on your training data (think of each site page as a text document), for example tf-idf (but also other possibilities; if you use Python I would strongly suggest scikit that provides lots of useful machine learning techniques and mentioned sklearn.TfidfVectorizer is already within). The point is to vectorize your text document in enhanced way. Imagine for example the English word the how many times it typically exists in text? You need to think of biases such as these.
Once your training data is vectorized you can use for example stochastic gradient descent classifier and see how it performs on your test data (in machine learning terminology the test data means to simply take some new data example and test what your ML program outputs).
In either case you will need to experiment with above options. There are many nuances and you need to test your data and see where you achieve the best results (depending on ML algorithm settings, type of vectorizer, used ML technique itself and so on). For example Support Vector Machines are great choice when it comes to binary classifiers too. You may wanna play with that too and see if it performs better than SGD.
In any case, remember that you will need to obtain quality training data with labels (harmful vs. safe) and find the best fitting classifier. On your journey to find the best one you may also wanna use cross validation to determine how well your classifier behaves. Again, already contained in scikit-learn.
N.B. Don't forget about valid cases. For example there may be a completely safe online magazine where it only mentions the harmful topic in some article; it doesn't mean the website itself is harmful though.
Edit: As I think of it, if you don't have any experience with ML at all it could be useful to take any online course because despite the knowledge of API and libraries you will still need to know what it does and the math behind the curtain (at least roughly).
What you are trying to do is called sentiment classification and is usually done with recurrent neural networks (RNNs) or Long short-term memory networks (LSTMs). This is not an easy topic to start with machine learning. If you are new you should have a look into linear/logistic regression, SVMs and basic neural networks (MLPs) first. Otherwise it will be hard to understand what is going on.
That said: there are many libraries out there for constructing neural networks. Probably easiest to use is keras. While this library simplifies a lot of things immensely, it isn't just a magic box that makes gold from trash. You need to understand what happens under the hood to get good results. Here is an example of how you can perform sentiment classification on the IMDB dataset (basically determine whether a movie review is positive or not) with keras.
For people who have no experience in NLP or ML, I recommend using TFIDF vectorizer instead of using deep learning libraries. In short, it converts sentences to vector, taking each word in vocabulary to one dimension (degree is occurrence).
Then, you can calculate cosine similarity to resulting vector.
To improve performance, use stemming / lemmatizing / stopwords supported in NLTK libraires.

Can neural bots trained by a neural network be used for the following purpose?

Hey I have a task to perform, which is basically to somehow retrieve powerpoint presentations or pdf documents pertaining to a certain field. Let's say I want to retrieve ppt and pdf lecture notes pertaining to bioinformatics field. I would like to know if this task can be achieved by adapting the approach of using neural bots trained by a neural network? Just wanted to confirm that this approach is not completely wrong before I proceeded further with my implementation.
And in case someone is wondering why a neural network or any learning algorithm at all is required in this case well here is my plan (which might be wrong or there might be an easier way to achieve this so please feel free to correct me):
I generate neural bots trained by a neural network (not sure how this training happens yet, I am assuming by supervised learning using a sample training set of certain ppt and pdf files) and then these bots retrieve pages that are similar to what they learnt through their training.
So is the above approach a correct way to go about completing this task?
Neural nets are complicated. It seems like you have a generic document classification problem. The simplest place to start is using some kind of naive bayes model with bag of word features. The next step I'd take from there is to use a linear SVM or logistic regression on the same feature set. If you still don't have the performance you want after you tried simpler things, maybe then go on to try using neural nets.
Just like you wouldn't say, I want to do write an email server, I'll start by writing an operating system, I'd tend to be wary of using neural nets before simpler things have failed.

What is machine learning? [closed]

Closed. This question is off-topic. It is not currently accepting answers.
Want to improve this question? Update the question so it's on-topic for Stack Overflow.
Closed 10 years ago.
Improve this question
What is machine learning ?
What does machine learning code do ?
When we say that the machine learns, does it modify the code of itself or it modifies history (database) which will contain the experience of code for given set of inputs?
What is a machine learning ?
Essentially, it is a method of teaching computers to make and improve predictions or behaviors based on some data. What is this "data"? Well, that depends entirely on the problem. It could be readings from a robot's sensors as it learns to walk, or the correct output of a program for certain input.
Another way to think about machine learning is that it is "pattern recognition" - the act of teaching a program to react to or recognize patterns.
What does machine learning code do ?
Depends on the type of machine learning you're talking about. Machine learning is a huge field, with hundreds of different algorithms for solving myriad different problems - see Wikipedia for more information; specifically, look under Algorithm Types.
When we say machine learns, does it modify the code of itself or it modifies history (Data Base) which will contain the experience of code for given set of inputs ?
Once again, it depends.
One example of code actually being modified is Genetic Programming, where you essentially evolve a program to complete a task (of course, the program doesn't modify itself - but it does modify another computer program).
Neural networks, on the other hand, modify their parameters automatically in response to prepared stimuli and expected response. This allows them to produce many behaviors (theoretically, they can produce any behavior because they can approximate any function to an arbitrary precision, given enough time).
I should note that your use of the term "database" implies that machine learning algorithms work by "remembering" information, events, or experiences. This is not necessarily (or even often!) the case.
Neural networks, which I already mentioned, only keep the current "state" of the approximation, which is updated as learning occurs. Rather than remembering what happened and how to react to it, neural networks build a sort of "model" of their "world." The model tells them how to react to certain inputs, even if the inputs are something that it has never seen before.
This last ability - the ability to react to inputs that have never been seen before - is one of the core tenets of many machine learning algorithms. Imagine trying to teach a computer driver to navigate highways in traffic. Using your "database" metaphor, you would have to teach the computer exactly what to do in millions of possible situations. An effective machine learning algorithm would (hopefully!) be able to learn similarities between different states and react to them similarly.
The similarities between states can be anything - even things we might think of as "mundane" can really trip up a computer! For example, let's say that the computer driver learned that when a car in front of it slowed down, it had to slow down to. For a human, replacing the car with a motorcycle doesn't change anything - we recognize that the motorcycle is also a vehicle. For a machine learning algorithm, this can actually be surprisingly difficult! A database would have to store information separately about the case where a car is in front and where a motorcycle is in front. A machine learning algorithm, on the other hand, would "learn" from the car example and be able to generalize to the motorcycle example automatically.
Machine learning is a field of computer science, probability theory, and optimization theory which allows complex tasks to be solved for which a logical/procedural approach would not be possible or feasible.
There are several different categories of machine learning, including (but not limited to):
Supervised learning
Reinforcement learning
Supervised Learning
In supervised learning, you have some really complex function (mapping) from inputs to outputs, you have lots of examples of input/output pairs, but you don't know what that complicated function is. A supervised learning algorithm makes it possible, given a large data set of input/output pairs, to predict the output value for some new input value that you may not have seen before. The basic method is that you break the data set down into a training set and a test set. You have some model with an associated error function which you try to minimize over the training set, and then you make sure that your solution works on the test set. Once you have repeated this with different machine learning algorithms and/or parameters until the model performs reasonably well on the test set, then you can attempt to use the result on new inputs. Note that in this case, the program does not change, only the model (data) is changed. Although one could, theoretically, output a different program, but that is not done in practice, as far as I am aware. An example of supervised learning would be the digit recognition system used by the post office, where it maps the pixels to labels in the set 0...9, using a large set of pictures of digits that were labeled by hand as being in 0...9.
Reinforcement Learning
In reinforcement learning, the program is responsible for making decisions, and it periodically receives some sort of award/utility for its actions. However, unlike in the supervised learning case, the results are not immediate; the algorithm could prescribe a large sequence of actions and only receive feedback at the very end. In reinforcement learning, the goal is to build up a good model such that the algorithm will generate the sequence of decisions that lead to the highest long term utility/reward. A good example of reinforcement learning is teaching a robot how to navigate by giving a negative penalty whenever its bump sensor detects that it has bumped into an object. If coded correctly, it is possible for the robot to eventually correlate its range finder sensor data with its bumper sensor data and the directions that sends to the wheels, and ultimately choose a form of navigation that results in it not bumping into objects.
More Info
If you are interested in learning more, I strongly recommend that you read Pattern Recognition and Machine Learning by Christopher M. Bishop or take a machine learning course. You may also be interested in reading, for free, the lecture notes from CIS 520: Machine Learning at Penn.
Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or databases. Read more on Wikipedia
Machine learning code records "facts" or approximations in some sort of storage, and with the algorithms calculates different probabilities.
The code itself will not be modified when a machine learns, only the database of what "it knows".
Machine learning is a methodology to create a model based on sample data and use the model to make a prediction or strategy. It belongs to artificial intelligence.
Machine learning is simply a generic term to define a variety of learning algorithms that produce a quasi learning from examples (unlabeled/labeled). The actual accuracy/error is entirely determined by the quality of training/test data you provide to your learning algorithm. This can be measured using a convergence rate. The reason you provide examples is because you want the learning algorithm of your choice to be able to informatively by guidance make generalization. The algorithms can be classed into two main areas supervised learning(classification) and unsupervised learning(clustering) techniques. It is extremely important that you make an informed decision on how you plan on separating your training and test data sets as well as the quality that you provide to your learning algorithm. When you providing data sets you want to also be aware of things like over fitting and maintaining a sense of healthy bias in your examples. The algorithm then basically learns wrote to wrote on the basis of generalization it achieves from the data you have provided to it both for training and then for testing in process you try to get your learning algorithm to produce new examples on basis of your targeted training. In clustering there is very little informative guidance the algorithm basically tries to produce through measures of patterns between data to build related sets of clusters e.g kmeans/knearest neighbor.
some good books:
Introduction to ML (Nilsson/Stanford),
Gaussian Process for ML,
Introduction to ML (Alpaydin),
Information Theory Inference and Learning Algorithms (very useful book),
Machine Learning (Mitchell),
Pattern Recognition and Machine Learning (standard ML course book at Edinburgh and various Unis but relatively a heavy reading with math),
Data Mining and Practical Machine Learning with Weka (work through the theory using weka and practice in Java)
Reinforcement Learning there is a free book online you can read:
http://www.cs.ualberta.ca/~sutton/book/ebook/the-book.html
IR, IE, Recommenders, and Text/Data/Web Mining in general use alot of Machine Learning principles. You can even apply Metaheuristic/Global Optimization Techniques here to further automate your learning processes. e.g apply an evolutionary technique like GA (genetic algorithm) to optimize your neural network based approach (which may use some learning algorithm). You can approach it purely in form of a probablistic machine learning approach for example bayesian learning. Most of these algorithms all have a very heavy use of statistics. Concepts of convergence and generalization are important to many of these learning algorithms.
Machine learning is the study in computing science of making algorithms that are able to classify information they haven't seen before, by learning patterns from training on similar information. There are all sorts of kinds of "learners" in this sense. Neural networks, Bayesian networks, decision trees, k-clustering algorithms, hidden markov models and support vector machines are examples.
Based on the learner, they each learn in different ways. Some learners produce human-understandable frameworks (e.g. decision trees), and some are generally inscrutable (e.g. neural networks).
Learners are all essentially data-driven, meaning they save their state as data to be reused later. They aren't self-modifying as such, at least in general.
I think one of the coolest definitions of machine learning that I've read is from this book by Tom Mitchell. Easy to remember and intuitive.
A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E
Shamelessly ripped from Wikipedia: Machine learning is a scientific discipline that is concerned with the design and development of algorithms that allow computers to evolve behaviors based on empirical data, such as from sensor data or databases.
Quite simply, machine learning code accomplishes a machine learning task. That can be a number of things from interpreting sensor data to a genetic algorithm.
I would say it depends. No, modifying code is not normal, but is not outside the realm of possibility. I would also not say that machine learning always modifies a history. Sometimes we have no history to build off of. Sometime we simply want to react to the environment, but not actually learn from our past experiences.
Basically, machine learning is a very wide-open discipline that contains many methods and algorithms that make it impossible for there to be 1 answer to your 3rd question.
Machine learning is a term that is taken from the real world of a person, and applied on something that can't actually learn - a machine.
To add to the other answers - machine learning will not (usually) change the code, but it might change it's execution path and decision based on previous data or new gathered data and hence the "learning" effect.
there are many ways to "teach" a machine - you give weights to many parameter of an algorithm, and then have the machine solve it for many cases, each time you give her a feedback about the answer and the machine adjusts the weights according to how close the machine answer was to your answer or according to the score you gave it's answer, or according to some results test algorithm.
This is one way of learning and there are many more...

Resources