Should I be using Docker to config a kernel or just the services running on the kernel? - docker

Let's say I have a web server running CentOS, with PHP and MySQL installed. I want to set up a git repository for developing with others, so I thought it would be appropriate to learn to use Docker for making the development process more consistent among developers. Currently I have separate containers for PHP and MySQL, and a docker-compose.yml file which has php and mysql as services (with build paths to the PHP and MySQL Dockerfiles).
Is there any value in also having a container for CentOS, as the developers would potentially be developing on all manner of operating systems? My understanding of Docker is that I can use it to specify consistent configuration of all the various services which the app depends on, which suggests to me that there may be value in also configuring the operating system/kernel to make that consistent as well.

Related

Docker based Web Hosting

I am posting this question due to lack of experience and I need professional suggestions. The questions in SO are mainly on how to deploy or host multiple websites using Docker running on a single Web Host. This can be done, but is it ideal for moderate traffic websites.
I deploy Docker based Containers in my local machine for development. A software container has a copy of the primary application, as well all dependencies — libraries, languages, frameworks, and everything else.
It becomes easy for me to simply migrate the “docker-compose.yml” or “dockerfile” into any remote Web Server. All the softwares and dependencies get installed and will run just like my local machine.
(Say) I have a VPS and I want to host multiple websites using Docker. The only thing that I need to configure is the Port, so that the domains can be mapped to port 80. For this I have to use an extra NGINX for routing.
But VPS can be used to host multiple websites without the need of Containerisation. So, is there any special benefit of running Docker in Web Servers like AWS, Google, Hostgator, etc., OR Is Docker best or idle for development only in local machine and not to be deployed in Web Servers for Hosting.
The main benefits of docker for simple web hosting are imo the following:
isolation each website/service might have different dependency requirements (one might require php 5, another php 7 and another nodejs).
separation of concerns if you split your setup into multiple containers you can easily upgrade or replace one part of it. (just consider a setup with 2 websites, which need a postgres database each. If each website has its own db container you won't have any issue bumping the postgres version of one of the websites, without affecting the other.)
reproducibility you can build the docker image once, test it on acceptance, promote the exact same image to staging and later to production. also you'll be able to have the same environment locally as on your server
environment and settings each of your services might depend on a different environment (for example smtp settings or a database connection). With containers you can easily supply each container it's specific environment variables.
security one can argue about this one as containers itself won't do much for you in terms of security. However due to easier dependency upgrades, seperated networking etc. most people will end up with a setup which is more secure. (just think about the db containers again here, these can share a network with your app/website container and there is no need to expose the port locally.)
Note that you should be careful with dockers port mapping. It uses the iptables and will override the settings of most firewalls (like ufw) per default. There is a repo with information on how to avoid this here: https://github.com/chaifeng/ufw-docker
Also there are quite a few projects which automate the routing of requests to the applications (in this case containers) very enjoyable and easy. They usually integrate a proper way to do ssl termination as well. I would strongly recommend looking into traefik if you setup a webserver with multiple containers which should all be accessible at port 80 and 443.

Best approach to create containers

I am developing an application with nodejs, mysql that has the following dependencies
Nginx (for reverse proxying the db and the nodejs server)
ghostscripts (dependent os is ubuntu)
pdftk (dependent os is ubuntu)
I would like to know what would be the best approach if I want to use docker containers to pack my application.
Should I create one Nginx container, one nodejs container and one MySQL and make them talk to each other? I know this is a better approach since its scalable, but in this case how and where should I install ghostscript and pdftk? (the nodejs application makes use of Ghostscript and pdftk for pdf files)
or
should I create one ubuntu docker container and install everything (viz. Nginx, pdftk, Ghostscript, mysql) in it?
Splitting an application up into separate containers requires a well defined API that support calls over the network (usually HTTP or some other application protocol on the TCP stack).
As both ghostscripts and pdftk are commandline tools invoked using a CLI you cannot call them from another container out of the box, you would need to develop some external facing API for that.
When setting the boundaries of your containers, think in terms of domains. The container becomes a the smallest unit that you will deploy and scale. That unit should be self contained and have a well defined, single purpose.
It is not clear from your description exactly what role nginx plays, but assuming that is some kind of client facing webserver or proxy, 3 containers makes sense in your case
NodeJs + PDFTK + Ghostscripts (The application)
Nginx (The webserver/proxy)
MySQL (The database)
The NodeJS application has all its application dependencies inside, but are more loosely coupled to Nginx and MySQL to whom it can communicate over the network.
You should create separate containers for each application, because this allows you to achieve:
Independent deploy.
Independent scaling.
Independent development.
Isolation and security.
For convenience, you can use docker-compose, which allows you to launch configure and launch multiple docker containers with a single command.
I would recommend that you deploy the database not in a Docker container in production because the database stores the state, it is also unreliable, and this increases the complexity of support.

Bitnami and Docker

How Bitnami and Docker are different from each other when it comes to container based deployments.
I have been learning about microservices recently. I used Docker images to run my apps as containers. And, I noticed that Bitnami does something similar when it creates a virtual image on a cloud form its launchpad.
From whatever links I could see on Internet, I could not visualize how these two - Docker and Bitnami - are different from each other.
Docker
Docker containers wrap a piece of software in a complete filesystem that contains everything needed to run: code, runtime, system tools, system libraries – anything that can be installed on a server. This guarantees that the software will always run the same, regardless of its environment.
Containers and virtual machines have similar resource isolation and allocation benefits -- but a different architectural approach allows containers to be more portable and efficient.
Virtual machines include the application, the necessary binaries and libraries, and an entire guest operating system -- all of which can amount to tens of GBs. Docker containers include the application and all of its dependencies --but share the kernel with other containers, running as isolated processes in user space on the host operating system. Docker containers are not tied to any specific infrastructure: they run on any computer, on any infrastructure, and in any cloud.
Bitnami
Bitnami is an app library for server software. You can install your favorite applications on your own servers or run them in the cloud.
One of the platforms on which to deploy these applications are using Docker Containers. Virtual machines are another technology where applications can be deployed.
Bitnami containers give you the latest stable versions of your application stacks, allowing you to focus on coding rather than updating dependencies or outdated libraries. Available as development containers, turnkey application and infrastructure containers, or build your own custom container using Stacksmith.

Docker, what is it and what is the purpose

I've heard about Docker some days ago and wanted to go across.
But in fact, I don't know what is the purpose of this "container"?
What is a container?
Can it replace a virtual machine dedicated to development?
What is the purpose, in simple words, of using Docker in companies? The main advantage?
VM: Using virtual machine (VM) software, for example, Ubuntu can be installed inside a Windows. And they would both run at the same time. It is like building a PC, with its core components like CPU, RAM, Disks, Network Cards etc, within an operating system and assemble them to work as if it was a real PC. This way, the virtual PC becomes a "guest" inside an actual PC which with its operating system, which is called a host.
Container: It's same as above but instead of using an entire operating system, it cut down the "unnecessary" components of the virtual OS to create a minimal version of it. This lead to the creation of LXC (Linux Containers). It therefore should be faster and more efficient than VMs.
Docker: A docker container, unlike a virtual machine and container, does not require or include a separate operating system. Instead, it relies on the Linux kernel's functionality and uses resource isolation.
Purpose of Docker: Its primary focus is to automate the deployment of applications inside software containers and the automation of operating system level virtualization on Linux. It's more lightweight than standard Containers and boots up in seconds.
(Notice that there's no Guest OS required in case of Docker)
[ Note, this answer focuses on Linux containers and may not fully apply to other operating systems. ]
What is a container ?
It's an App: A container is a way to run applications that are isolated from each other. Rather than virtualizing the hardware to run multiple operating systems, containers rely on virtualizing the operating system to run multiple applications. This means you can run more containers on the same hardware than VMs because you only have one copy of the OS running, and you do not need to preallocate the memory and CPU cores for each instance of your app. Just like any other app, when a container needs the CPU or Memory, it allocates them, and then frees them up when done, allowing other apps to use those same limited resources later.
They leverage kernel namespaces: Each container by default will receive an environment where the following are namespaced:
Mount: filesystems, / in the container will be different from / on the host.
PID: process id's, pid 1 in the container is your launched application, this pid will be different when viewed from the host.
Network: containers run with their own loopback interface (127.0.0.1) and a private IP by default. Docker uses technologies like Linux bridge networks to connect multiple containers together in their own private lan.
IPC: interprocess communication
UTS: this includes the hostname
User: you can optionally shift all the user id's to be offset from that of the host
Each of these namespaces also prevent a container from seeing things like the filesystem or processes on the host, or in other containers, unless you explicitly remove that isolation.
And other linux security tools: Containers also utilize other security features like SELinux, AppArmor, Capabilities, and Seccomp to limit users inside the container, including the root user, from being able to escape the container or negatively impact the host.
Package your apps with their dependencies for portability: Packaging an application into a container involves assembling not only the application itself, but all dependencies needed to run that application, into a portable image. This image is the base filesystem used to create a container. Because we are only isolating the application, this filesystem does not include the kernel and other OS utilities needed to virtualize an entire operating system. Therefore, an image for a container should be significantly smaller than an image for an equivalent virtual machine, making it faster to deploy to nodes across the network. As a result, containers have become a popular option for deploying applications into the cloud and remote data centers.
Can it replace a virtual machine dedicated to development ?
It depends: If your development environment is running Linux, and you either do not need access to hardware devices, or it is acceptable to have direct access to the physical hardware, then you'll find a migration to a Linux container fairly straight forward. The ideal target for a docker container are applications like web based API's (e.g. a REST app), which you access via the network.
What is the purpose, in simple words, of using Docker in companies ? The main advantage ?
Dev or Ops: Docker is typically brought into an environment in one of two paths. Developers looking for a way to more rapidly develop and locally test their application, and operations looking to run more workload on less hardware than would be possible with virtual machines.
Or Devops: One of the ideal targets is to leverage Docker immediately from the CI/CD deployment tool, compiling the application and immediately building an image that is deployed to development, CI, prod, etc. Containers often reduce the time to move the application from the code check-in until it's available for testing, making developers more efficient. And when designed properly, the same image that was tested and approved by the developers and CI tools can be deployed in production. Since that image includes all the application dependencies, the risk of something breaking in production that worked in development are significantly reduced.
Scalability: One last key benefit of containers that I'll mention is that they are designed for horizontal scalability in mind. When you have stateless apps under heavy load, containers are much easier and faster to scale out due to their smaller image size and reduced overhead. For this reason you see containers being used by many of the larger web based companies, like Google and Netflix.
Same questions were hitting my head some days ago and what i found after getting into it, let's understand in very simple words.
Why one would think about docker and containers when everything seems fine with current process of application architecture and development !!
Let's take an example that we are developing an application using nodeJs , MongoDB, Redis, RabbitMQ etc services [you can think of any other services].
Now we face these following things as problems in application development and shipping process if we forget about existence of docker or other alternatives of containerizing applications.
Compatibility of services(nodeJs, mongoDB, Redis, RabbitMQ etc.) with OS(even after finding compatible versions with OS, if something unexpected happens related to versions then we need to relook the compatibility again and fix that).
If two system components requires a library/dependency with different versions in application in OS(That need a relook every time in case of an unexpected behaviour of application due to library and dependency version issue).
Most importantly , If new person joins the team, we find it very difficult to setup the new environment, person has to follow large set of instructions and run hundreds of commands to finally setup the environment And it takes time and effort.
People have to make sure that they are using right version of OS and check compatibilities of services with OS.And each developer has to follow this each time while setting up.
We also have different environment like dev, test and production.If One developer is comfortable using one OS and other is comfortable with other OS And in this case, we can't guarantee that our application will behave in same way in these two different situations.
All of these make our life difficult in process of developing , testing and shipping the applications.
So we need something which handles compatibility issue and allows us to make changes and modifications in any system component without affecting other components.
Now we think about docker because it's purpose is to
containerise the applications and automate the deployment of applications and ship them very easily.
How docker solves above issues-
We can run each service component(nodeJs, MongoDB, Redis, RabbitMQ) in different containers with its own dependencies and libraries in the same OS but with different environments.
We have to just run docker configuration once then all our team developers can get started with simple docker run command, we have saved lot of time and efforts here:).
So containers are isolated environments with all dependencies and
libraries bundled together with their own process and networking
interfaces and mounts.
All containers use the same OS resources
therefore they take less time to boot up and utilise the CPU
efficiently with less hardware costs.
I hope this would be helpful.
Why use docker:
Docker makes it really easy to install and running software without worrying about setup or dependencies. Docker is really made it easy and really straight forward for you to install and run software on any given computer not just your computer but on web servers as well or any cloud based computing platform. For example when I went to install redis in my computer by using bellow command
wget http://download.redis.io/redis-stable.tar.gz
I got error,
Now I could definitely go and troubleshoot this install that program and then try installing redis again, and I kind of get into endless cycle of trying to do all bellow troubleshooting as you I am installing and running software.
Now let me show you how easy it is to run read as if you are making use of Docker instead. just run the command docker run -it redis, this command will install docker without any error.
What docker is:
To understand what is docker you have to know about docker Ecosystem.
Docker client, server, Machine, Images, Hub, Composes are all projects tools pieces of software that come together to form a platform where ecosystem around creating and running something called containers, now if you run the command docker run redis something called docker CLI reached out to something called the Docker Hub and it downloaded a single file called an image.
An image is a single file containing all the dependencies and all the configuration required to run a very specific program, for example redis this which is what the image that you just downloaded was supposed to run.
This is a single file that gets stored on your hard drive and at some point time you can use this image to create something called a container.
A container is an instance of an image and you can kind of think it as being like a running program with it's own isolated set of hardware resources so it kind of has its own little set or its own little space of memory has its own little space of networking technology and its own little space of hard drive space as well.
Now lets examine when you give bellow command:
sudo docker run hello-world
Above command will starts up the docker client or docker CLI, Docker CLI is in charge of taking commands from you kind of doing a little bit of processing on them and then communicating the commands over to something called the docker server, and docker server is in charge of the heavy lifting when we ran the command Docker run hello-world,
That meant that we wanted to start up a new container using the image with the name of hello world, the hello world image has a tiny tittle program inside of it whose sole purpose or sole job is to print out the message that you see in the terminal.
Now when we ran that command and it was issued over to the docker server a series of actions very quickly occurred in background. The Docker server saw that we were trying to start up a new container using an image called hello world.
The first thing that the docker server did was check to see if it already had a local copy like a copy on your personal machine of the hello world image or that hello world file.So the docker server looked into something called the image cache.
Now because you and I just installed Docker on our personal computers that image cache is currently empty, We have no images that have already been downloaded before.
So because the image cache was empty the docker server decided to reach out to a free service called Docker hub. The Docker Hub is a repository of free public images that you can freely download and run on your personal computer. So Docker server reached out to Docker Hub and and downloaded the hello world file and stored it on your computer in the image-cache, where it can now be re-run at some point the future very quickly without having to re-downloading it from the docker hub.
After that the docker server will use it to create an instance of a container, and we know that a container is an instance of an image, its sole purpose is to run one very specific program. So the docker server then essentially took that image file from image cache and loaded it up into memory to created a container out of it and then ran a single program inside of it. And that single programs purpose was to print out the message that you see.
What a container is:
A container is a process or a set of processes that have a grouping of resource specifically assigned to it, in the bellow is a diagram that anytime that we think about a container we've got some running process that sends a system call to a kernel, the kernel is going to look at that incoming system call and direct it to a very specific portion of the hard drive, the RAM, CPU or what ever else it might need and a portion of each of these resources is made available to that singular process.
Let me try to provide as simple answers as possible:
But in fact, I don't know what is the purpose of this "container"?
What is a container?
Simply put: a package containing software. More specifically, an application and all its dependencies bundled together. A regular, non-dockerised application environment is hooked directly to the OS, whereas a Docker container is an OS abstraction layer.
And a container differs from an image in that a container is a runtime instance of an image - similar to how objects are runtime instances of classes in case you're familiar with OOP.
Can it replace a virtual machine dedicated to development?
Both VMs and Docker containers are virtualisation techniques, in that they provide abstraction on top of system infrastructure.
A VM runs a full “guest” operating system with virtual access to host resources through a hypervisor. This means that the VM often provides the environment with more resources than it actually needs In general, VMs provide an environment with more resources than most applications need. Therefore, containers are a lighter-weight technique. The two solve different problems.
What is the purpose, in simple words, of using Docker in companies?
The main advantage?
Containerisation goes hand-in-hand with microservices. The smaller services that make up the larger application are often tested and run in Docker containers. This makes continuous testing easier.
Also, because Docker containers are read-only they enforce a key DevOps principle: production services should remain unaltered
Some general benefits of using them:
Great isolation of services
Great manageability as containers contain everything the app needs
Encapsulation of implementation technology (in the containers)
Efficient resource utilisation (due to light-weight os virtualisation) in comparison to VMs
Fast deployment
If you don't have any prior experience with Docker this answer will cover the basics needed as a developer.
Docker has become a standard tool for DevOps as it is an effective application to improve operational efficiencies. When you look at why Docker was created and why it is very popular, it is mostly for its ability to reduce the amount of time it takes to set up the environments where applications run and are developed.
Just look at how long it takes to set up an environment where you have React as the frontend, a node and express API for backend, which also needs Mongo. And that's just to start. Then when your team grows and you have multiple developers working on the same front and backend and therefore they need to set up the same resources in their local environment for testing purposes, how can you guarantee every developer will run the same environment resources, let alone the same versions? All of these scenarios play well into Docker's strengths where it's value comes from setting containers with specific settings, environments and even versions of resources. Simply type a few commands to have Docker set up, install, and run your resources automatically.
Let's briefly go over the main components. A container is basically where your application or specific resource is located. For example, you could have the Mongo database in one container, then the frontend React application, and finally your node express server in the third container.
Then you have an image, which is from what the container is built. The images contains all the information that a container needs to build a container exactly the same way across any systems. It's like a recipe.
Then you have volumes, which holds the data of your containers. So if your applications are on containers, which are static and unchanging, the data that change is on the volumes.
And finally, the pieces that allow all these items to speak is networking. Yes, that sounds simple, but understand that each container in Docker have no idea of the existence of each container. They're fully isolated. So unless we set up networking in Docker, they won't have any idea how to connect to one and another.
There are really good answers above which I found really helpful.
Below I had drafted a simpler answer:
Reasons to dockerize my web application?
a. One OS for multiple applications ( Resources are shared )
b. Resource manangement ( CPU / RAM) is efficient.
c. Serverless Implementation made easier -Yes, AWS ECS with Fargate, But serverless can be achieved with Lamdba
d. Infra As Code - Agree, but IaC can be achieved via Terraforms
e. "It works in my machine" Issue
Still, below questions are open when choosing dockerization
A simple spring boot application
a. Jar file with size ~50MB
b. creates a Docker Image ~500MB
c. Cant I simply choose a small ec2 instance for my microservices.
Financial Benefits (reducing the individual instance cost) ?
a. No need to pay for individual OS subscription
b. Is there any monetary benefit like the below implementation?
c. let say select t3.2xlarge ( 8 core / 32 GB) and start 4-5 docker images ?

Linking containers together on production deploys

I want to migrate my current deploy to docker, it counts on a mongodb service, a redis service, a pg server and a rails app, I have created already a docker container for each but i have doubts when it comes to start and linking them. Under development I'm using fig but I think it was not meant to be used on production. In order to take my deployment to production level, what mechanism should I use to auto-start and link containers together? my deploy uses a single docker host that already runs Ubuntu so i can't use CoreOS.
Linknig containers in production is a tricky thing. It will hardwire the IP addresses of the dependent containers so if you ever need to restart a container or launch a replacement (like upgrading the version of mongodb) your rails app will not work out of the box with the new container and its new IP address.
This other answer explains some available alternatives to linking.
Regarding starting the containers, you can use any deployment tool to run the required docker commands (Capistrano can easily do that). After that, docker will restart running the containers after a reboot.
You might need a watcher process to restart containers if they die, just as you would have one for a normal rails app.
Services like Tutum and Dockerize.it can make this simpler. As far as I know, Tutum will not deploy to your servers. Dockerize.it will, but is very rough (disclaimer: I'm part of the team building it).
You can convert your fig configuration to CoreOS formatted systemd configuration files with fig2coreos. Google App Engine supports CoreOS, or you can run CoreOS on AWS or your cloud provider of choice. fig2coreos also supports deploying to CoreOS in Vagrant for local development.
CenturyLink (fig2coreos authors) have an example blog post here:
This blog post will show you how to bridge the gap between building
complex multi-container apps using Fig and deploying those
applications into a production CoreOS system.
EDIT: If you are constrained to an existing host OS you can use QEMU ("a generic and open source machine emulator and virtualizer") to host a CoreOS instance. Instructions are available from the CoreOS team.

Resources