Differentiation of Linear Regression function - machine-learning

I am getting started on the caltech Machine learning course. In the linear regression video to minimize the error differentiation is performed, i did understand the power rule of differentiation however in the second step i did not understand how did X get converted to X'(X Transpose).
Is it because we of vector multiplication rule as column of X and resulting (Xw-y) row needs to match? Any pointers would be of great help.
Thank you

Related

Can gradient descent itself solve non-linear problem in ANN?

I'm recently studying the theory about neural network. And I'm a little confuse about the role of gradient descent and activation function in ANN.
From what I understand, the activation function is used for transforming the model to non-linear model. So that it can solve the problem that is not linear separable. And the gradient descent is the tool to help model learn.
So my questions are :
If I use an activation function such as sigmoid for the model, but instead of using gradient decent to improve the model, I use classic perceptron learning rule : Wj = Wj + a*(y-h(x)), where the h(x) is the sigmoid function with the net input. Can the model learn the non-linear separable problem ?
If I do not include the non-linear activation function in the model. Just simple net input : h(x) = w0 + w1*x1 + ... + wj*xj. And using gradient decent to improve the model. Can the model learn the non-linear separable problem ?
I'm really confused about this problem, that which one is the main reason that the model can learn non-linear separable problem.
Supervised Learning 101
This is a pretty deep question, so I'm going to review the basics first to make sure we understand each other. In its simplest form, supervised learning, and classification in particular, attempts to learn a function f such that y=f(x), from a set of observations {(x_i,y_i)}. The following problems arise in practice:
You know nothing about f. It could be a polynomial, exponential, or some exotic highly non-linear thing that doesn't even have a proper name in math.
The dataset you're using to learn is just a limited, and potentially noisy, subset of the true data distribution you're trying to learn.
Because of this, any solution you find will have to be approximate. The type of architecture you will use will determine a family of function h_w(x), and each value of w will represent one function in this family. Note that because there is usually an infinite number of possible w, the family of functions h_w(x) are often infinitely large.
The goal of learning will then be to determine which w is most appropriate. This is where gradient descent intervenes: it is just an optimisation tool that helps you pick reasonably good w, and thus select a particular model h(x).
The problem is, the actual f function you are trying to approximate may not be part of the family h_w you decided to pick, and so you are .
Answering the actual questions
Now that the basics are covered, let's answer your questions:
Putting a non-linear activation function like sigmoid at the output of a single layer model ANN will not help it learn a non-linear function. Indeed a single layer ANN is equivalent to linear regression, and adding the sigmoid transforms it into Logistic Regression. Why doesn't it work? Let me try an intuitive explanation: the sigmoid at the output of the single layer is there to squash it to [0,1], so that it can be interpreted as a class membership probability. In short, the sigmoid acts a differentiable approximation to a hard step function. Our learning procedure relies on this smoothness (a well-behaved gradient is available everywhere), and using a step function would break eg. gradient descent. This doesn't change the fact that the decision boundary of the model is linear, because the final class decision is taken from the value of sum(w_i*x_i). This is probably not really convincing, so let's illustrate instead using the Tensorflow Playground. Note that the learning rule does not matter here, because the family of function you're optimising over consist only of linear functions on their input, so you will never learn a non-linear one!
If you drop the sigmoid activation, you're left with a simple linear regression. You don't even project your result back to [0,1], so the output will not be simple to interpret as class probability, but the final result will be the same. See the Playground for a visual proof.
What is needed then?
To learn a non-linearly separable problem, you have several solutions:
Preprocess the input x into x', so that taking x' as an input makes the problem linearly separable. This is only possible if you know the shape that the decision boundary should take, so generally only applicable to very simple problems. In the playground problem, since we're working with a circle, we can add the squares of x1 and x2 to the input. Although our model is linear in its input, an appropriate non-linear transformation of the input has been carefully selected, so we get an excellent fit.
We could try to automatically learn the right representation of the data, by adding one or more hidden layers, which will work to extract a good non-linear transformation. It can be proven that using a single hidden layer is enough to approximate anything as long as make the number of hidden neurons high enough. For our example, we get a good fit using only a few hidden neurons with ReLU activations. Intuitively, the more neurons you add, the more "flexible" the decision boundary can become. People in deep learning have been adding depth rather than width because it can be shown that making the network deeper makes it require less neurons overall, even though it makes training more complex.
Yes, gradient descent is quite capable of solving a non-linear problem. The method works as long as the various transformations are roughly linear within a "delta" of the adjustments. This is why we adjust our learning rates: to stay within the ranges in which linear assumptions are relatively accurate.
Non-linear transformations give us a better separation to implement the ideas "this is boring" and "this is exactly what I'm looking for!" If these functions are smooth, or have a very small quantity of jumps, we can apply our accustomed approximations and iterations to solve the overall system.
Determining the useful operating ranges is not a closed-form computation, by any means; as with much of AI research, it requires experimentation and refinement. The direct answer to your question is that you've asked the wrong entity -- try the choices you've listed, and see which works best for your application.

Why do we omit coefficients of polynomial terms when feature mapping?

I've been studying the Machine Learning course on Coursera by Andrew Ng.
I've solved the programming assignment that is given at the end of the week 3. But there was something that I was wondering and I do not want to skip things without being able to reason them, at least I couldn't.
Why do we omit coefficients of polynomial terms when feature mapping?
I quote from the assignment's PDF (which you can view from the link).
2.2 Feature mapping
One way to fit the data better is to create more features from each data
point. In the provided function mapFeature.m, we will map the features into
all polynomial terms of x 1 and x 2 up to the sixth power.
As you can see coefficients are not included.
Considering I am not good at math I think we found all the polynomial terms doing:
since here we would get coefficients after we take the powers, why do we omit them in the vector?
By coefficients I mean coefficients of the terms
instead of in the vector.

logistic regression cost function scikit learn

So I've done a coursera ml course, and now i am looking at scikit-learn logistic regression which is a little bit different. I've been using sigmoid function and a cost function was divided to two separate cases when y=0 and y=1. But scikit learn have one function(I've found out that this is Generalised logistic function) which really don't make sense for me.
http://scikit-learn.org/stable/_images/math/760c999ccbc78b72d2a91186ba55ce37f0d2cf37.png
I am sorry i don't have enough reputation to post image.
So the main concern of the function is the case when y=0, than the cost function always have this log(e^0+1) value, so it does not matter what was the X or w. Can someone explain me that ?
If I am correct the $y_i$ you have in this formula can only assume the values -1 or 1 (as derived in the link given by #jinyu0310). Normally you use this cost function (with regularisation)
(sorry for the equation inserted as image, but cannot use latex here, the image comes from goo.gl/M53u44)
So you always have the two terms that plays a role when yi = 0 or when yi=1. I am trying to find a better explanation on the notation that scikit uses in this formula but so far no luck.
Hope that helps you. Is just another way of writing the cost function with a regularisation factor. Keep also in mind that a constant factor in front of everything will not play a role in the optimisation process. Since you want to find the minimum and are not interested in overall factors that multiply everything.

How do I use principal component analysis in supervised machine learning classification problems?

I have been working through the concepts of principal component analysis in R.
I am comfortable with applying PCA to a (say, labeled) dataset and ultimately extracting out the most interesting first few principal components as numeric variables from my matrix.
The ultimate question is, in a sense, now what? Most of the reading I've come across on PCA immediately halts after the computations are done, especially with regards to machine learning. Pardon my hyperbole, but I feel as if everyone agrees that the technique is useful, but nobody wants to actually use it after they do it.
More specifically, here's my real question:
I respect that principle components are linear combinations of the variables you started with. So, how does this transformed data play a role in supervised machine learning? How could someone ever use PCA as a way to reduce dimensionality of a dataset, and THEN, use these components with a supervised learner, say, SVM?
I'm absolutely confused about what happens to our labels. Once we are in eigenspace, great. But I don't see any way to continue to move forward with machine learning if this transformation blows apart our concept of classification (unless there's some linear combination of "Yes" or "No" I haven't come across!)
Please step in and set me straight if you have the time and wherewithal. Thanks in advance.
Old question, but I don't think it's been satisfactorily answered (and I just landed here myself through Google). I found myself in your same shoes and had to hunt down the answer myself.
The goal of PCA is to represent your data X in an orthonormal basis W; the coordinates of your data in this new basis is Z, as expressed below:
Because of orthonormality, we can invert W simply by transposing it and write:
Now to reduce dimensionality, let's pick some number of components k < p. Assuming our basis vectors in W are ordered from largest to smallest (i.e., eigenvector corresponding to the largest eigenvalue is first, etc.), this amounts to simply keeping the first k columns of W.
Now we have a k dimensional representation of our training data X. Now you run some supervised classifier using the new features in Z.
The key is to realize that W is in some sense a canonical transformation from our space of p features down to a space of k features (or at least the best transformation we could find using our training data). Thus, we can hit our test data with the same W transformation, resulting in a k-dimensional set of test features:
We can now use the same classifier trained on the k-dimensional representation of our training data to make predictions on the k-dimensional representation of our test data:
The point of going through this whole procedure is because you may have thousands of features, but (1) not all of them are going to have a meaningful signal and (2) your supervised learning method may be far too complex to train on the full feature set (either it would take too long or your computer wouldn't have a enough memory to process the calculations). PCA allows you to dramatically reduce the number of features it takes to represent your data without eliminating features of your data that truly add value.
After you have used PCA on a portion of your data to compute the transformation matrix, you apply that matrix to each of your data points before submitting them to your classifier.
This is useful when the intrinsic dimensionality of your data is much smaller than the number of components and the gain in performance you get during classification is worth the loss in accuracy and the cost of PCA. Also, keep in mind the limitations of PCA:
In performing a linear transformation, you implicitly assume that all components are expressed in equivalent units.
Beyond variance, PCA is blind to the structure of your data. It may very well happen that the data splits along low-variance dimensions. In that case, the classifier won't learn from transformed data.

Estimating parameters in multivariate classification

Newbie here typesetting my question, so excuse me if this don't work.
I am trying to give a bayesian classifier for a multivariate classification problem where input is assumed to have multivariate normal distribution. I choose to use a discriminant function defined as log(likelihood * prior).
However, from the distribution,
$${f(x \mid\mu,\Sigma) = (2\pi)^{-Nd/2}\det(\Sigma)^{-N/2}exp[(-1/2)(x-\mu)'\Sigma^{-1}(x-\mu)]}$$
i encounter a term -log(det($S_i$)), where $S_i$ is my sample covariance matrix for a specific class i. Since my input actually represents a square image data, my $S_i$ discovers quite some correlation and resulting in det(S_i) being zero. Then my discriminant function all turn Inf, which is disastrous for me.
I know there must be a lot of things go wrong here, anyone willling to help me out?
UPDATE: Anyone can help how to get the formula working?
I do not analyze the concept, as it is not very clear to me what you are trying to accomplish here, and do not know the dataset, but regarding the problem with the covariance matrix:
The most obvious solution for data, where you need a covariance matrix and its determinant, and from numerical reasons it is not feasible is to use some kind of dimensionality reduction technique in order to capture the most informative dimensions and simply discard the rest. One such method is Principal Component Analysis (PCA), which applied to your data and truncated after for example 5-20 dimensions would yield the reduced covariance matrix with non-zero determinant.
PS. It may be a good idea to post this question on Cross Validated
Probably you do not have enough data to infer parameters in a space of dimension d. Typically, the way you would get around this is to take an MAP estimate as opposed to an ML.
For the multivariate normal, this is a normal-inverse-wishart distribution. The MAP estimate adds the matrix parameter of inverse Wishart distribution to the ML covariance matrix estimate and, if chosen correctly, will get rid of the singularity problem.
If you are actually trying to create a classifier for normally distributed data, and not just doing an experiment, then a better way to do this would be with a discriminative method. The decision boundary for a multivariate normal is quadratic, so just use a quadratic kernel in conjunction with an SVM.

Resources