Supervised Learning and its number of predictable classes - machine-learning

I am just a beginner of the ML. I have gone through several websites for the basics and there are lots of unclear stuffs obviously to me and among below is the one.
In CNN(Convolutional Neural Network), is it required to indicate to the system prior that how many number of classes available as a result?
I was going through below URL, and get this question.
https://www.youtube.com/watch?v=2-Ol7ZB0MmU

Yes. The final layer of the CNN depends on the quantity of output classes you have: one element for each class. A CNN is built to handle a particular problem; this includes knowing the full shapes of the input and output.
For instance, the ILSVRC image data set comes with classified images, 1000 classes in all. The topologies that learn on this data set have 1000 elements in the final layer.
Does that solve the problem?

Related

What is the appropriate way to train a face detector / classifier?

I want to build a face detector/classifier to generate a network that detects whether a face is present in an image/video.
I understand the basic concept, but what I have problems with is the choice of the number of classes.
Initially, I thought that two classes (with face / without face) would be sufficient. However, I was unsure which data I should use for the class 'without face'. So I threw together datasets of equipment and plants and animals, whereupon the classes were very unbalanced, which is apparently not good.
Then I thought it would be better to use as many classes as possible.
But again, I am unsure what would be the best/common approach to the problem?
You can experiment with any number of samples and different images for the negative class. If the datasets with equipment/plant/places you have are imbalanced, you can try to subsample, e.g. pick 100 images from each.
Just don't make the negative class too huge, w.r.t the number of images with human samples you have. The rest is up to experimentation.

Balance problem for classification on Cleveland Dataset

I’ve questioned the way famous Cleveland heart disease dataset labels its objects here
This dataset is very unbalanced (many objects of “no disease” class). I noticed that many papers that used this dataset used to combine all the other classes and reduce this to a binary classification (disease vs no disease)
Are there other ways to deal with this unbalancing class problem rather than reduce the number of classes to get a good result from a classifer?
Generally speaking, when handling a non balanced dataset, one should use a non-supervised learning approach.
You may use the Multivariate Normal Distribution.
In your case, if you have many elements in one class and very few in the other class, a supervised learning method is not appropriate. Therefore, the Multivariate Normal Distribution, which is a non supervised machine learning approach, may be the solution. The algorithm learns from the data and finds values which define the data (i.e. the most important part of the data, here the "no desease" cases). Once these values are outputed, one can search the elements which do not fit them, and these elements are the so called "abnormal elements" or "anomalies". In your case, these are the "disease" individuals.
A second solution would be to ballance you dataset, and use the initial supervised learning algorithm. You can do that using the following techniques. These statements are generally good, but they depend a lot on the data you have (mind, I do not have access to your input data!), so you should test them and see which one best fits your purpose.
Collecting more elements for the class with few elements.
Duplicate the elements in the class with less elements, in order to obtain the same amount of data for both classes, as for the class with more lements. There is a problem with this solution, in the case where you have a great difference of input data volume between the two classes, and you use a neural network, because the class with duplicated elements will not be very variate, and neural networks provide good results only when trained with a great amount of very variate data.
Use less data in the class with more lements, in order to have the same amount of elements in both classes as in the class with few elements. Here too there might be a problem when using a neural network, because training it with less data might not give the good results. be careful also in order to have more input elements than features, otherwise it would not work.

Deep learning - Find patterns combining images and bios data

I was wondering if is it possible combining images and some "bios" data for finding patterns. For example, if I want to know if a image is a cat or dog and I have:
Enough image data for train my model
Enough "bios" data like:
size of the animal
size of the tail
weight
height
Thanks!
Are you looking for a simple yes or no answer? In that case, yes. You are in complete control over building your models which includes what data you make them process and what predictions you get.
If you actually wanted to ask on how to do it, it will depend on specific datasets and application but one way to do it would be by having two models, one specialized for determining the output label (cat or dog) from the image - so perhaps some kind of a simple CNN. The other would process the text data and find patterns in that. Then at the end, you could have either a non-AI evaluator that would combine these two predictions into one naively or you could have both of these models as an input to a simple neural network that would learn pattern from the output of these two models.
That is just one way to possibly do it though and, as I said, the exact implementation will depend on a lot of other factors. How are both of the datasets labeled? Are the data connected to each other? Meaning that, for each picture, do you have some textual data that is for that specific image? Or do you jsut have a spearated dataset of pictures and separate dataset of biological information?
There is also the consideration that you'll probably want to make about the necessity of this approach. Current models can predict categories from processing images with super-human precision. Unless this is an excersise in creating a more complex model, this seems like an overkill.
PS: I wouldn't use term "bios" in this context, I believe it is not a very common usage and here on SO it will mostly confuse people into thinking you mean the actual BIOS.

Multiple neural networks with one output each or one with multiple outputs?

I want to classify the input as one of 3 possibilities. Is it better to use 3 networks with one output each or 1 network with 3 outputs?
(i.e. 3 networks that output 0 or 1 or 1 network that outputs a one hot vector of length 3 [1,0,0]
Does the answer change depending on how complex the incoming data is to classify?
At what amount of outputs does it make sense to partition the networks (if ever)? For example, if I want to classify into 20 groups, does it make a difference?
I would say it would make more sense to use a single network with multiple outputs.
The main reason is that hidden layers (I'm assuming you'll have at least one hidden layer) can be interpreted as transforming the data from the original space (feature space) into a different space that is more suitable for the task (classification in your case). For example, when training a network to recognize faces from raw pixels, it might use a hidden layer to first detect simple shapes such as small lines based on pixels, then use another hidden layer to detect simple shapes such as eyes/noses based on the lines from the first layer, etc. (it may not be entirely as ''clean'' as this, but this is an easy-to-understand example).
Such a transformation that a network can learn is typically useful for the classification task, regardless of what class the specific example has. For example, it is useful to be able to detect eyes in images regardless of whether or not the actual image contains a face; if you do indeed detect two eyes, you can classify it as a face, and otherwise you classify it as not being a face. In both cases, you were looking for eyes.
So, by splitting up into multiple networks, you may end up learning quite similar patterns in all networks anyway. Then you might as well have saved yourself the computational effort and just learned it once.
Another disadvantage of splitting up into multiple networks would be that you would probably cause your dataset to become imbalanced (or more imbalanced if it already is imbalanced). Suppose you have three classes, with exactly 1/3 of the dataset belonging to each class. If you use three networks for three binary classification tasks, you suddenly always have 1/3 ''1'' classes and 2/3 ''0'' classes. A network may then become biased towards predicting 0s everywhere, since those are the majority classes in each of the three separate problems.
Note that this is all based on my intuition; the best solution if you have time would be to simply try both approaches and test! I don't think I have ever seen someone using multiple networks for a single classification task in practice though, so if you only have time for one approach I'd recommend going for a single network.
I think the only case where it would really make sense to use multiple networks would be if you actually want to predict multiple unrelated values (or at least values that are not strongly related). For example, if, given images, you want to 1) predict whether or not there is a dog on the image, and 2) whether it is a photograph or a painting. Then it may be better to use two networks with two outputs each, instead of a single network with four outputs.

A few implementation details for a Support-Vector Machine (SVM)

In a particular application I was in need of machine learning (I know the things I studied in my undergraduate course). I used Support Vector Machines and got the problem solved. Its working fine.
Now I need to improve the system. Problems here are
I get additional training examples every week. Right now the system starts training freshly with updated examples (old examples + new examples). I want to make it incremental learning. Using previous knowledge (instead of previous examples) with new examples to get new model (knowledge)
Right my training examples has 3 classes. So, every training example is fitted into one of these 3 classes. I want functionality of "Unknown" class. Anything that doesn't fit these 3 classes must be marked as "unknown". But I can't treat "Unknown" as a new class and provide examples for this too.
Assuming, the "unknown" class is implemented. When class is "unknown" the user of the application inputs the what he thinks the class might be. Now, I need to incorporate the user input into the learning. I've no idea about how to do this too. Would it make any difference if the user inputs a new class (i.e.. a class that is not already in the training set)?
Do I need to choose a new algorithm or Support Vector Machines can do this?
PS: I'm using libsvm implementation for SVM.
I just wrote my Answer using the same organization as your Question (1., 2., 3).
Can SVMs do this--i.e., incremental learning? Multi-Layer Perceptrons of course can--because the subsequent training instances don't affect the basic network architecture, they'll just cause adjustment in the values of the weight matrices. But SVMs? It seems to me that (in theory) one additional training instance could change the selection of the support vectors. But again, i don't know.
I think you can solve this problem quite easily by configuring LIBSVM in one-against-many--i.e., as a one-class classifier. SVMs are one-class classifiers; application of an SVM for multi-class means that it has been coded to perform multiple, step-wise one-against-many classifications, but again the algorithm is trained (and tested) one class at a time. If you do this, then what's left after step-wise execution against the test set, is "unknown"--in other words, whatever data is not classified after performing multiple, sequential one-class classifications, is by definition in that 'unknown' class.
Why not make the user's guess a feature (i.e., just another dependent variable)? The only other option is to make it the class label itself, and you don't want that. So you would, for instance, add a column to your data matrix "user class guess", and just populate it with some value most likely to have no effect for those data points not in the 'unknown' category and therefore for which the user will not offer a guess--this value could be '0' or '1', but really it depends on how you have your data scaled and normalized).
Your first item will likely be the most difficult, since there are essentially no good incremental SVM implementations in existence.
A few months ago, I also researched online or incremental SVM algorithms. Unfortunately, the current state of implementations is quite sparse. All I found was a Matlab example, OnlineSVR (a thesis project only implementing regression support), and SVMHeavy (only binary class support).
I haven't used any of them personally. They all appear to be at the "research toy" stage. I couldn't even get SVMHeavy to compile.
For now, you can probably get away with doing periodic batch training to incorporate updates. I also use LibSVM, and it's quite fast, so it sould be a good substitute until a proper incremental version is implemented.
I also don't think SVM's can model the concept of an "unknown" sample by default. They typically work as a series of boolean classifiers, so a sample ends up as positively being classified as something, even if that sample is drastically different from anything seen previously. A possible workaround would be to model the ranges of your features, and randomly generate samples that exist outside of these ranges, and then add these to your training set.
For example, if you have an attribute called "color", which has a minimum value of 4 and a maximum value of 123, then you could add these to your training set
[({'color':3},'unknown'),({'color':125},'unknown')]
to give your SVM an idea of what an "unknown" color means.
There are algorithms to train an SVM incrementally, but I don't think libSVM implements this. I think you should consider whether you really need this feature. I see no problem with your current approach, unless the training process is really too slow. If it is, could you retrain in batches (i.e. after every 100 new examples)?
You can get libSVM to produce probabilities of class membership. I think this can be done for multiclass classification, but I'm not entirely sure about that. You will need to decide some threshold at which the classification is not certain enough and then output 'Unknown'. I suppose something like setting a threshold on the difference between the most likely and second most likely class would achieve this.
I think libSVM scales to any number of new classes. The accuracy of your model may well suffer by adding new classes, however.
Even though this question is probably out of date, I feel obliged to give some additional thoughts.
Since your first question has been answered by others (there is no production-ready SVM which implements incremental learning, even though it is possible), I will skip it. ;)
Adding 'Unknown' as a class is not a good idea. Depending on it's use, the reasons are different.
If you are using the 'Unknown' class as a tag for "this instance has not been classified, but belongs to one of the known classes", then your SVM is in deep trouble. The reason is, that libsvm builds several binary classifiers and combines them. So if you have three classes - let's say A, B and C - the SVM builds the first binary classifier by splitting the training examples into "classified as A" and "any other class". The latter will obviously contain all examples from the 'Unknown' class. When trying to build a hyperplane, examples in 'Unknown' (which really belong to the class 'A') will probably cause the SVM to build a hyperplane with a very small margin and will poorly recognizes future instances of A, i.e. it's generalization performance will diminish. That's due to the fact, that the SVM will try to build a hyperplane which separates most instances of A (those officially labeled as 'A') onto one side of the hyperplane and some instances (those officially labeled as 'Unknown') on the other side .
Another problem occurs if you are using the 'Unknown' class to store all examples, whose class is not yet known to the SVM. For example, the SVM knows the classes A, B and C, but you recently got example data for two new classes D and E. Since these examples are not classified and the new classes not known to the SVM, you may want to temporarily store them in 'Unknown'. In that case the 'Unknown' class may cause trouble, since it possibly contains examples with enormous variation in the values of it's features. That will make it very hard to create good separating hyperplanes and therefore the resulting classifier will poorly recognize new instances of D or E as 'Unknown'. Probably the classification of new instances belonging to A, B or C will be hindered as well.
To sum up: Introducing an 'Unknown' class which contains examples of known classes or examples of several new classes will result in a poor classifier. I think it's best to ignore all unclassified instances when training the classifier.
I would recommend, that you solve this issue outside the classification algorithm. I was asked for this feature myself and implemented a single webpage, which shows an image of the object in question and a button for each known class. If the object in question belongs to a class which is not known yet, the user can fill out another form to add a new class. If he goes back to the classification page, another button for that class will magically appear. After the instances have been classified, they can be used for training the classifier. (I used a database to store the known classes and reference which example belongs to which class. I implemented an export function to make the data SVM-ready.)

Resources