Code being executed after completion handler is called - ios

Why is this continuing after the completion handler is called?
See the comments in the code. See the code path to get to #1. At this point I'm expecting the code to call the completion handler complete(), and return from the function, preventing execution of #2. However, code at #2 still appears to be getting triggered. Any ideas why this os occurring?
func syncSessionLog(withCompletion complete: #escaping ((Bool, String?) -> Void)) {
... bunch of code
managedObjectContext.performAndWait {
let trackFetchRequest: NSFetchRequest<NSFetchRequestResult> = Track.fetchRequest()
let trackPredicate = NSPredicate(format: "id == \(session.track_id)")
trackFetchRequest.predicate = trackPredicate
trackFetchRequest.fetchLimit = 1;
do {
let foundTrack = try self.managedObjectContext.fetch(trackFetchRequest) as! [Track]
if foundTrack.count < 1 {
self.debug.log(tag: "SessionManager", content: "not found tID: \(session.track_id)")
//#1 When not found, complete is called, yet the code still manages to reach "do stuff" down the bottom.
complete(false, "Not found")
return
}
associatedTrack = foundTrack[0]
}
catch {
self.debug.log(tag: "SessionManager", content: "Failed to get Track object from Core Data: \(error.localizedDescription)")
fatalCoreDataError(error)
complete(false, "Failed to retrieve")
}
}
//#2 do stuff with associatedTrack

return will exit out of the current context, which is the closure associated with the performAndWait. After that closure returns, execution continues with the next statement after performAndWait which is whatever is at #2.
You can move the code from point #2 inside the closure

Its quite simple - the return statement is inside a block, so it returns from the block, not from the outside method. It would be more visible if the block had some return value.
As such, this return is not needed in your code. You will need to set a Bool flag to indicate the result of block execution and act accoridngly in #2.

Related

Adding condition based on previous result on DispatchQueue

Is it possible to set a condition on the next queue of DispatchQueue? Supposed there are 2 API calls that should be executed synchronously, callAPI1 -> callAPI2. But, callAPI2 should be only executed if callAPI1 returning true. Please check code below for more clear situation:
let dispatchQueue: DispatchQueue = DispatchQueue(label: "queue")
let dispatchGroup = DispatchGroup()
var isSuccess: Bool = false
dispatchGroup.enter()
dispatchQueue.sync {
self.callAPI1(completion: { (result) in
isSuccess = result
dispatchGroup.leave()
}
}
dispatchGroup.enter()
dispatchQueue.sync {
if isSuccess { //--> This one always get false
self.callAPI2(completion: { (result) in
isSuccess = result
dispatchGroup.leave()
})
} else {
dispatchGroup.leave()
}
}
dispatchGroup.notify(queue: DispatchQueue.main, execute: {
completion(isSuccess) //--> This one always get false
})
Currently above code always returning isSuccess as false despite on callAPI1's call returning true, which cause only callAPI1's is called.
All non-playground code typed directly into answer, expect little errors.
It appears that you are trying to make an asynchronous call into a synchronous one, and the way you are attempting this simply will not work. Assuming callAPI1 is asynchronous then after:
self.callAPI1(completion: { (result) in
isSuccess = result
}
the completion block has (in all probability) not yet been run, you cannot test isSuccess immediately, as in:
self.callAPI1(completion: { (result) in
isSuccess = result
}
if isSuccess
{
// in all probability this will never be reached
}
Wrapping the code into a synchronous block will have no effect whatsoever:
dispatchQueue.sync
{
self.callAPI1(completion: { (result) in
isSuccess = result
}
// at this point, in all probability, the completion block
// has not yet run, therefore...
}
// at this point it has also not run
A sync dispatch just runs its block on a different queue and waits for it to complete; if that block contains asynchronous code, as yours does, then it is not magically made synchronous - it executes asynchronously as normal, the synchronously dispatched block terminates, the sync dispatch returns, and your code continues. The sync dispatch has no real effect (apart from running the block on a different queue while blocking the current one).
If you need to sequence a number of asynchronous calls you can do it a number of ways. One method is to simply chain the calls through the completion blocks. Using this approach your code becomes:
self.callAPI1(completion: { (result) in
if !result { completion(false) }
else
{
self.callAPI2(completion: { (result) in
completion(result)
}
}
}
Using Semaphores
If you have a long sequence of such calls using the above pattern then the code can become very nested, in such a case instead of nesting you can use semaphores to sequence the calls. A simple semaphore can be used to block (thread) execution, using wait(), until it is signalled (by an unblocked thread), using signal().
Notice the emphasis here on blocking, once you introduce the ability to block execution all sorts of issues have to be considered: among them are UI responsiveness - blocking the UI thread is not good; deadlock - for example if the code that will issue semaphore wait and signal operations is executing on the same thread then after a wait there will be no signal...
Here is a sample Swift Playground script to demonstrate using semaphores. The pattern follows your original code but uses a semaphore in addition to your boolean.
import Cocoa
// some convenience functions for our dummy callAPI1 & callAPI2
func random(_ range : CountableClosedRange<UInt32>) -> UInt32
{
let lower = range.lowerBound
let upper = range.upperBound
return lower + arc4random_uniform(upper - lower + 1)
}
func randomBool() -> Bool
{
return random(0...1) == 1
}
class Demo
{
// grab the global concurrent utility queue to schedule our work on
let workerQueue = DispatchQueue.global(qos : .utility)
// dummy callAPI1, just pauses and then randomly return success or failure
func callAPI1(_ completion : #escaping (Bool) -> Void) -> Void
{
// do the "work" on workerQueue, which is concurrent so other work
// can be executing, or *blocked*, on the same queue
let pause = random(1...2)
workerQueue.asyncAfter(deadline: .now() + Double(pause))
{
// produce a random success result
let success = randomBool()
print("callAPI1 after \(pause) -> \(success)")
completion(success)
}
}
func callAPI2(_ completion : #escaping (Bool) -> Void) -> Void
{
let pause = random(1...2)
workerQueue.asyncAfter(deadline: .now() + Double(pause))
{
let success = randomBool()
print("callAPI2 after \(pause) -> \(success)")
completion(success)
}
}
func runDemo(_ completion : #escaping (Bool) -> Void) -> Void
{
// We run the demo as a standard async function
// which doesn't block the main thread
workerQueue.async
{
print("Demo starting...")
var isSuccess: Bool = false
let semaphore = DispatchSemaphore(value: 0)
// do the first call
// this will asynchronously execute on a different thread
// *including* its completion block
self.callAPI1
{ (result) in
isSuccess = result
semaphore.signal() // signal completion
}
// we can safely wait for the semaphore to be
// signalled as callAPI1 is executing on a different
// thread so we will not deadlock
semaphore.wait()
if isSuccess
{
self.callAPI2
{ (result) in
isSuccess = result
semaphore.signal() // signal completion
}
semaphore.wait() // wait for completion
}
completion(isSuccess)
}
}
}
Demo().runDemo { (result) in print("Demo result: \(result)") }
// For the Playground
// ==================
// The Playground can terminate a program run once the main thread is done
// and before all async work is finished. This can result in incomplete execution
// and/or errors. To avoid this we sleep the main thread for a few seconds.
sleep(6)
print("All done")
// Run the Playground multiple times, the results should vary
// (different wait times, callAPI2 may not run). Wait until
// the "All done"" before starting next run
// (i.e. don't push stop, it confuses the Playground)
Or...
Another approach to avoid the nesting is to design functions (or operators) which take two async methods and produce a single one by implementing the nesting pattern. Long nested sequences can then be reduce to more linear sequences. This approach is left as an exercise.
HTH

Performing an asynchronous task within a synchronous call

I would like to register a user which is performed asynchronous. However, the calling function behaves synchronous since the program should only continue when a user is created successfully.
The current implementation is:
class SignUp: NSObject {
// ...
func signUpUser() throws -> Bool {
guard hasEmptyFields() else {
throw CustomErrorCodes.EmptyField
}
guard isValidEmail() else {
throw CustomErrorCodes.InvalidEmail
}
createUser( { (result) in
guard result else {
throw CustomErrorCodes.UserNameTaken
}
return true // Error: cannot throw....
})
}
func createUser( succeeded: (result: Bool) -> () ) -> Void {
let newUser = User()
newUser.username = username!
newUser.password = password!
// User is created asynchronously
createUserInBackground(newUser, onCompletion: {(succeed, error) -> Void in
if (error != nil) {
// Show error alert
} else {
succeeded(result: succeed)
}
})
}
}
and in a ViewController the signup is initiated as follows:
do {
try signup.signUpUser()
} catch let error as CustomErrorCodes {
// Process error
}
However, this does not work since createUser is not a throwing function. How could I ensure that signUpUser() only returns true when an new user is created successfully?
You say:
and in a ViewController the signup is initiated as follows:
do {
try signup.signUpUser()
} catch let error as CustomErrorCodes {
// Process error
}
But don't. That's not how asynchronous works. The whole idea is that you do not wait. If you're waiting, it's not asynchronous. That means you're blocking, and that's just what you mustn't do.
Instead, arrange to be called back at the end of your asynchronous process. That's when you'll hear that things have succeeded or not. Look at how a download task delegate is structured:
https://developer.apple.com/library/ios/documentation/Foundation/Reference/NSURLSessionDownloadTask_class/
The download task calls back into the delegate to let it know whether we completed successfully or not. That is the relationship you want to have with your asynchronous task. You want to be like that delegate.
You need to adjust your thinking. Instead of trying to write a synchronous method that we need to wait for an asynchronous event, write a method that takes a completion closure. The method will return immediately, but once the asynchronous process is complete it wild invoke the completion closure. When you call such a method you pass in code in the incompletion closure that gets called once the job is done.

How to retrieve data synchronously from Firebase?

I have two collections namely, Users and Questions.
Based on the user logged in using userId, I retrieve the currQuestion value from users collection.
Based on the currQuestion value, I need to retrieve the question document from Firebase Questions collection.
I've used the below code to retrieve userId
rootRef.child("0").child("users")
.queryOrderedByChild("userId")
.queryEqualToValue("578ab1a0e9c2389b23a0e870")
.observeSingleEventOfType(.Value, withBlock: { (snapshot) in
for child in snapshot.children {
self.currQuestion = child.value["currentQuestion"] as! Int
}
print("Current Question is \(self.currQuestion)")
//print(snapshot.value as! Array<AnyObject>)
}, withCancelBlock : { error in
print(error.description)
})
and to retrieve question
rootRef.child("0").child("questions")
.queryOrderedByChild("id")
.queryEqualToValue(currQuestion)
.observeSingleEventOfType(.Value, withBlock: { (snapshot) in
for child in snapshot.children {
print(child.value["question"] as! String)
}
}, withCancelBlock: { error in
print(error.description)
})
But the above code executes asynchronously. I need to solution to make this synchronous or how to implement listeners so I can fire back the question query once the currQuestion value is changed?
Write your own method which takes in a completion handler as its parameter and waits for that block of code to finish. Like so:
func someMethod(completion: (Bool) -> ()){
rootRef.child("0").child("users")
.queryOrderedByChild("userId")
.queryEqualToValue("578ab1a0e9c2389b23a0e870")
.observeSingleEventOfType(.Value, withBlock: { (snapshot) in
for child in snapshot.children {
self.currQuestion = child.value["currentQuestion"] as! Int
}
print("Current Question is \(self.currQuestion)")
completion(true)
//print(snapshot.value as! Array<AnyObject>)
}, withCancelBlock : { error in
print(error.description)
})
}
And then whenever you want to call that function, call like so:
someMethod{ success in
if success{
//Here currValue is updated. Do what you want.
}
else{
//It is not updated and some error occurred. Do what you want.
}
}
Completion handlers are usually used to wait for a block of code to finish executing completely. P.S. As long as they don't block the main thread, asynchronous requests are made to act synchronous by adding a completion handler like the code shown above.
What it simply does is wait for your currValue to be updated first (receiving the data async from the server) and then when you call someMethod like how I've shown, and since the last and only parameter to the function someMethod is a closure (a.k.a, trailing Closure ), you can skip the parenthesis and call it. Here is a good read about closures. And since the closure is of type (Bool) -> (), you just tell your someMethod when the task is completed which is done like completion(true) in my code, and then while calling it, you call it with success (You can use any word you want) which WILL BE of type Bool as it is declared like so, And then use it in the function call. Hope it helps. :)

Completion Handler - Parse + Swift

I'm trying to generate an array of PFObjects called 'areaList'. I've been researching this quite a bit and understand that I could benefit from using a completion handler to handle the asynchronous nature of the loaded results. My ask, specifically, is to get some guidance on what I'm doing wrong as well as potential tips on how to achieve the result "better".
Here is my query function with completion handler:
func loadAreasNew(completion: (result: Bool) -> ()) -> [Area] {
var areaList = self.areaList
let areaQuery = PFQuery(className: "Area")
areaQuery.findObjectsInBackgroundWithBlock {
(areas: [PFObject]?, error: NSError?) -> Void in
if error == nil {
for area in areas! {
let areaToAdd = area as! Area
areaList.append(areaToAdd)
// print(areaList) // this prints the list each time
// print(areaToAdd) // this prints the converted Area in the iteration
// print(area) // this prints the PFObject in the iteration
if areaList.count == areas!.count {
completion(result: true)
} else {
completion(result: false)
}
}
} else {
print("There was an error")
}
}
return areaList
}
Here is how I'm attempting to call it in viewDidLoad:
loadAreasNew { (result) -> () in
if (result == true) {
print(self.areaList)
} else {
print("Didn't Work")
}
}
I assigned this variable before viewDidLoad:
var areaList = [Area]()
In the console, I get the following:
Didn't Work
Didn't Work
Didn't Work
Didn't Work
[]
Representing the 5 items that I know are there in Parse...
This is an interesting question. First off, PFQuery basically has a built in completion handler, which is quiet nice! As you probably know, all of the code within the areaQuery.findObjectsInBackgroundWithBlock {...} triggers AFTER the server response. A completion most often serves the purpose of creating a block, with the ability of asynchronously returning data and errors.
Best practice would (IMO) to just call the code that you want to use with the results from your PFQuery right after your area appending loop (which I'm gonna take out because I'm picky like that), like so:
func loadAreasNew() {
var areaList = self.areaList
let areaQuery = PFQuery(className: "Area")
areaQuery.findObjectsInBackgroundWithBlock {
(areas: [PFObject]?, error: NSError?) -> Void in
if error == nil {
let areasFormatted = areas! As [Areas]
areasList += areasFormatted
//Something like this
self.codeINeedAreasFor(areasList)
}
} else {
print(error)
}
}
}
HOWEVER! If you really feel the need to use some completion handlers, check out this other answer for more info on how to use them. But keep in mind all tools have a time and a place...
There are a few issues here.
Your completion handler doesn't require you to define the name for your completion handler's parameters, so you could easily use completion: (Bool) -> ()
Further in your function, you're returning areaList. This should be put through the completion handler like this onComplete(areaList) and change your completion handler parameter to expect your area list.
Then, when you call your function, it could look more like this :
loadAreasNew { result in
if (result == true) {
print(self.areaList)
} else {
print("Didn't Work")
}
}
Here is my concern:
1) Don't pass in a local variable and make the function return it, it's meaningless and danger.
You may want to initiate an empty array and make your fetch, then "return" it.
2) The fetch request is processed in background, you will have no idea when it will have finished. If you return the array immediately it will always be an empty array.
Put the "return" in your completion too.
3) Parse already has a distance checking method, you don't have to do it manually. aPARSEQUERRY.where(key:,nearGeoPoint:,inKilometers:)
I will rewrite the function as:
func loadNewAreas(completion:([Area],err?)->()){
let areaQuery = PFQuery(className: "Area")
areaQuery.where("location",nearGeoPoint:MYCURRENTLOCATION,inKilometers:50)
areaQuery.findObjectInBackgroundWithBlock(){objects,err
if objects.count == 0
{
completion([],err)
}
let areas = Area.areasFromPFObjects(objects)
completion(areas,err)
}
}

Finish all asynchronous requests before loading data?

I have run into an issue where I have multiple asynchronous requests occuring which grab images and information from the Facebook API and my Firebase database. I want to perform all my asynchronous requests, then store all that data that I grabbed from the Facebook API/Firebase database into one entire object which I can quickly load. I have set up completion handlers for every asynchronous request which I thought forces the program to "wait" until the request is complete and then have the program continue, but that doesn't seem to work for me. Below is my attempt:
func setupEvents(completion: (result: Bool, Event: Event) -> Void){
// Get a reference to Events
eventsReference = Firebase(url:"<DB Name>")
eventAttendeesRef = Firebase(url:"<DB Name>")
//Read the data at our posts reference
println("Event References: \(eventsReference)")
eventsReference.observeEventType(FEventType.ChildAdded, withBlock: { (snapshot) -> Void in
let eventName = snapshot.value["eventName"] as? String
let eventLocation = snapshot.value["eventLocation"] as? String
let eventCreator = snapshot.value["eventCreator"] as? String
var attendees: NSMutableDictionary = [:]
var attendeesImages = [UIImage]()
let attendee: NSMutableDictionary = [:]
let group = dispatch_group_create()
//Get attendees first
dispatch_group_enter(group)
self.getAttendees(snapshot.key as String, completion:{ (result, name, objectID) -> Void in
if(result == true){
println("Finished grabbing \(name!) \(objectID!)")
attendees.addEntriesFromDictionary(attendee as [NSObject : AnyObject])
}
else {
println("False")
}
dispatch_group_leave(group)
})
//Get attendees photos
dispatch_group_enter(group)
self.getAttendeesPictures(attendee, completion: { (result, image) -> Void in
if result == true {
println("Finished getting attendee photos. Now to store into Event object.")
attendeesImages.append(image!)
}
else{
println("false")
}
dispatch_group_leave(group)
})
dispatch_group_notify(group, dispatch_get_main_queue()) {
println("both requests done")
//Maintain array snapshot keys
self.eventIDs.append(snapshot.key)
if snapshot != nil {
let event = Event(eventName: eventName, eventLocation:eventLocation, eventPhoto:eventPhoto, fromDate:fromDate, fromTime:fromTime, toDate:toDate, toTime:toTime, attendees: attendees, attendeesImages:attendeesImages, attendeesImagesTest: attendeesImagesTest, privacy:privacy, eventCreator: eventCreator, eventCreatorID: eventCreatorID)
println("Event: \(event)")
completion(result: true, Event: event)
}
}
}) { (error) -> Void in
println(error.description)
}
}
I know I have my completion handlers set correctly as I have tested in my program. However, what I want is that only after both the getAttendees and getAttendeesPictures function completes, I then want to store all the information I grabbed the snapshot, getAttendees, and getAttendeesPictures function and store them into an event object. Any ideas on how to accomplish this? I've tried to look into dispatch_groups to help me handle this via this link: Checking for multiple asynchronous responses from Alamofire and Swift but my program seems to only execute the getAttendees function but not the getAttendeesPictures function. Below are also the getAttendees and getAttendeesPictures functions:
func getAttendees(child: String, completion: (result: Bool, name: String?, objectID: String?) -> Void){
//Get event attendees of particular event
var attendeesReference = self.eventAttendeesRef.childByAppendingPath(child)
println("Loading event attendees")
//Get all event attendees
attendeesReference.observeEventType(FEventType.ChildAdded, withBlock: { (snapshot) -> Void in
let name = snapshot.value.objectForKey("name") as? String
let objectID = snapshot.value.objectForKey("objectID") as? String
println("Name: \(name) Object ID: \(objectID)")
completion(result: true, name: name, objectID: objectID)
}) { (error) -> Void in
println(error.description)
}
func getAttendeesPictures(attendees: NSMutableDictionary, completion: (result: Bool, image: UIImage?)-> Void){
println("Attendees Count: \(attendees.count)")
for (key, value) in attendees{
let url = NSURL(string: "https://graph.facebook.com/\(key)/picture?type=large")
println("URL: \(url)")
let urlRequest = NSURLRequest(URL: url!)
//Asynchronous request to display image
NSURLConnection.sendAsynchronousRequest(urlRequest, queue: NSOperationQueue.mainQueue()) { (response:NSURLResponse!, data:NSData!, error:NSError!) -> Void in
if error != nil{
println("Error: \(error)")
}
// Display the image
let image = UIImage(data: data)
if(image != nil){
completion(result: true, image: image)
}
}
}
}
For users seeking answer to question in title then use of dispatch_group and GCD outlined here: i.e embedding one group inside the notification method of another dispatch_group is valid. Another way to go at a higher level would be NSOperations and dependencies which would also give further control such as canceling operations.
Outline:
func doStuffonObjectsProcessAndComplete(arrayOfObjectsToProcess: Array) -> Void){
let firstGroup = dispatch_group_create()
for object in arrayOfObjectsToProcess {
dispatch_group_enter(firstGroup)
doStuffToObject(object, completion:{ (success) in
if(success){
// doing stuff success
}
else {
// doing stuff fail
}
// regardless, we leave the group letting GCD know we finished this bit of work
dispatch_group_leave(firstGroup)
})
}
// called once all code blocks entered into group have left
dispatch_group_notify(firstGroup, dispatch_get_main_queue()) {
let processGroup = dispatch_group_create()
for object in arrayOfObjectsToProcess {
dispatch_group_enter(processGroup)
processObject(object, completion:{ (success) in
if(success){
// processing stuff success
}
else {
// processing stuff fail
}
// regardless, we leave the group letting GCD know we finished this bit of work
dispatch_group_leave(processGroup)
})
}
dispatch_group_notify(processGroup, dispatch_get_main_queue()) {
print("All Done and Processed, so load data now")
}
}
}
The remainder of this answer is specific to this codebase.
There seem to be a few problems here:
The getAttendees function takes an event child and returns an objectID and Name which are both Strings? Shouldn't this method return an array of attendees? If not, then what is the objectID that is returned?
Once an array of attendees is returned, then you can process them in a group to get the pictures.
The getAttendeesPictures eventually returns UIImages from Facebook. It's probably best to cache these out to the disk and pass path ref - keeping all these fetched images around is bad for memory, and depending on size and number, may quickly lead to problems.
Some examples:
func getAttendees(child: String, completion: (result: Bool, attendees: Array?) -> Void){
let newArrayOfAttendees = []()
// Get event attendees of particular event
// process attendees and package into an Array (or Dictionary)
// completion
completion(true, attendees: newArrayOfAttendees)
}
func getAttendeesPictures(attendees: Array, completion: (result: Bool, attendees: Array)-> Void){
println("Attendees Count: \(attendees.count)")
let picturesGroup = dispatch_group_create()
for attendee in attendees{
// for each attendee enter group
dispatch_group_enter(picturesGroup)
let key = attendee.objectID
let url = NSURL(string: "https://graph.facebook.com/\(key)/picture?type=large")
let urlRequest = NSURLRequest(URL: url!)
//Asynchronous request to display image
NSURLConnection.sendAsynchronousRequest(urlRequest, queue: NSOperationQueue.mainQueue()) { (response:NSURLResponse!, data:NSData!, error:NSError!) -> Void in
if error != nil{
println("Error: \(error)")
}
// Display the image
let image = UIImage(data: data)
if(image != nil){
attendee.image = image
}
dispatch_group_leave(picturesGroup)
}
}
dispatch_group_notify(picturesGroup, dispatch_get_main_queue()) {
completion(true, attendees: attendees)
}
}
func setupEvents(completion: (result: Bool, Event: Event) -> Void){
// get event info and then for each event...
getAttendees(child:snapshot.key, completion: { (result, attendeesReturned) in
if result {
self.getAttendeesPictures(attendees: attendeesReturned, completion: { (result, attendees) in
// do something with completed array and attendees
}
}
else {
}
})
}
The above code is just an outline, but hopefully points you in the right direction.
The two requests are executing at the same time, so there is no attendees to get pictures from when the second request executes, if the getAttendees completion closure is going to be called multiple times then you can do something like this:
let group = dispatch_group_create()
for key in keys {
dispatch_group_enter(group)
self.getAttendee(key as String, completion:{ (result, attendee) in
if(result == true){
attendees.addEntriesFromDictionary(attendee)
self.getAttendeesPictures(attendee, completion: { (result, image) in
if result == true {
attendeesImages.append(image!)
}
dispatch_group_leave(group)
})
} else {
dispatch_group_leave(group)
}
})
}
dispatch_group_notify(group, dispatch_get_main_queue()) {}
If the result of the first request is the complete set of attendees you don't even need to use GCD, just call getAttendeesPictures inside the completion closure.
This code doesn't exactly uses the same variables and methods of the original code, it only gives the idea.
Hope it helps!
While there is definitely solution with using GCD and stuff around it, synchronization in general is pain and the more your code gets complicated, the more problems it will start showing - but I think there is one-for-all solution to that: Bolts framework from Facebook (both for android na iOS)
Bolts Framework usage
So what is so magical about it? Well, it lets you create "Tasks", and then chain them. The method in particular that you are interested in is taskForCompletionOfAllTasks: , which is made for parallel processing, just what you need. I wrote a little example for you which you can adjust to your needs:
func fetchAllInformation() -> BFTask {
// First, create all tasks (if you need more, than just create more, it is as easy as that
var task1 = BFTaskCompletionSource()
var task2 = BFTaskCompletionSource()
var tasks = [task1, task2]
// What you do, is you set result / error to tasks and the propagate in the chain upwards (it is either result, or error)
// You run task 1 in background
API.instance.fetchFirstDetailsInBackgroundWithBlock {
(object: AnyObject!, error: NSError!) -> Void in
// On error or on success, you assign result to task (whatever you want)
if error == nil {
task1.setResult(object)
} else {
task1.setError(error)
}
}
// You run task 2 in background
API.instance.fetchSecondDetailsInBackgroundWithBlock {
(object: AnyObject!, error: NSError!) -> Void in
// On error or on success, you assign result to task (whatever you want)
if error == nil {
task2.setResult(object)
} else {
task2.setError(error)
}
}
// Now you return new task, which will continue ONLY if all the tasks ended
return BFTask(forCompletionOfAllTasks: tasks)
}
Once you have main method done, you can use bolts chaining magic:
func processFullObject() {
// Once you have main method done, you can use bolts chaining magic
self.fetchAllInformation().continueWithBlock { (task : BFTask!) -> AnyObject! in
// All the information fetched, do something with result and probably with information along the way
self.updateObject()
}
}
The Bolts framework documentation / README covers basically everything there is to know about it and it is quite extensive, so I would suggest you to go through it - it is very easy to use once you get the basics. I personally use it for exactly this, and it is a blast. This answer will hopefully provide you with different solution and approach, possibly a cleaner one.
There is something wrong with this conceptually. It sounds like you want to wait until both of these functions complete before doing something else, but what you haven't explained is that getAttendeesPictures depends on the outcome of getAttendees. That means what you really want to do it execute one asynchronous block, then execute a second asynchronous block with the output of the first, and then execute your final completion block when both are finished.
GCD is not particularly suited for this; you're better of using NSOperationQueue with NSBlockOperations. There are two distinct advantages to this over GCD:
NSOperation uses familiar object-oriented syntax compared to GCD's c-type functions, so it's pretty easy to write and understand.
Operations in the queue can have explicit dependencies on one another, so you can make it clear that e.g. operation B will only be executed after operation A is complete.
There is a great writeup of this by NSHipster which I'd recommend you go read. It's talked about mostly in the abstract, but what you want to do is use NSBlockOperation to create two block operations, one for executing getAttendees and one for executing getAttendeesPictures, and then make it explicit that the second block depends on the first before adding them both to a queue. They will then both execute and you can use a completion block on the second operation to do something once both have completed.
Dave Roberts is right in his response though: an immediate problem with the code is that you don't use the output of the getAttendees function to actually create any attendees. Perhaps this part of the code is missing, but from what I can see the name and objectID are just printed out. If you want to pass something useful into the getAttendeesPictures function you will need to fix this part first.
This is off the top of my head. The idea is to read and handle new asyc data only when all of the nested blocks complete.
We leverage a while loop to handle waiting for a signal to read the next set of data.
The outside while loop continues as long as done equals false. And nothing is really going on, other than consuming cpu cycles while it waits. The if inside the loop will only be trigged (set to true) when all of the attendees have been read.
Meanwhile inside the loop we work through nested blocks, reading in the attendee and then when that completes, read their picture, and when that completes read the firebase data. Finally once we have all data from the prior blocks we stuff the data into an object which is then added to the dictionary. At that time it is determined if we are finished reading attendees and if so, bail completely. If not, we read the next attendee.
(this is conceptual)
done = false
readyToReadNextAttendee = true
while ( done == false )
{
if (readyToReadNextAttendee == true ) {
readyToReadNextAttendee = false
readAttendee
readPicture
readFirebase {
putDataIntoObject
addObjectToDictionary
if finishedReadingAttendees {
done = true
} else {
readyToReadNextAttendee = true
}
}
}
}
If you have the option of reading in all of the attendees first, you could iterate over and array as well, not reading the next index until readyToReadNextAttendee = true
One Idea i have used is to place an if statement check inside the query statement call back and place the query statement call back in a for loop (so you can loop through all of your queries), so the if statement should check if this the last call back expected, then you should execute a return statement or a deferred.resolve statement, the following is a concept code.
var list=fooKeys //list of keys (requests) i want to fetch form firebase
var array=[] // This is the array that will hold the result of all requests
for(i=xyz;loop breaking condition; i++){
Ref = new Firebase("https://yourlink.firebaseio.com/foo/" + fooKeys[i]);
Ref.once("value", function (data) {
array.push(data.val());
if(loop breaking condition == true){
//This mean that we looped over all items
return array; //or deferred.resolve(array);
}
})
}
Putting this code in a function and call it asynchronously will give you the ability to wait for the whole results before proceed in doing other stuff.
Hope you (and the others) find this beneficial.

Resources