Code which actually uses the "\a", "\f", and "\v" escape sequences? - printing

If it weren't for the obligatory listings of escape sequences in textbooks, I'd be unaware of the ASCII characters denoted by the escape sequences "\a", "\f", and "\v" (denoting "bell", "form feed", and "vertical tab".) Or at least as unaware as I am about the esoteric ASCII control characters like "File Separator", "Data Link Escape" and "End of Medium" that fill up much of the first 32 slots in the ASCII character table.
Are there programs and systems which actually make heaving use of the more uncommon escape sequences given by the C language and its descendants? For exmaple, if the new crop of programming languages were to drop "\v" notation, would anyone care? Besides the obvious use in printing, is "\f" used? Beyond making a terminal beep, what about "\a"? Are these routinely supported?

You are conflating the escape sequence, which is used by the compiler, with the character, which is used the program (and perhaps passed on to other programs).
Your question, though relevant, is a bit late. Java has already dropped '\v'. Funny, I never noticed. But, not C# or JavaScript. Never noticed that, either.

Related

Antlr differentiating a newline from a \n

Let's say I have the following statement:
SELECT "hi\n
there";
Notice there is a literal newline in there, and the escape \n. The string that antlr4 picks up for me is:
String_Literal: "hi\n\nthere"
In other words, not differentiating between the literal newline and the \n one. Is there a way to differentiate the two, or what's the usual process to do that?
My guess is that the output you pasted into your question comes from a call to the Antlr4 runtime method tree.toStringTree(parser) (or equivalent in whatever target language you've chosen).
That function calls escapeWhitespace in the utilities class/module/file, and that function does what it's name suggests: it converts (some) whitespace characters to C-like backslash escape sequences. (Specifically, it handles newline, carriage return, and tab characters.) It does not escape backslash characters, which makes its output ambiguous; there's no way to distinguish between the two character escape sequence \n and the escaped conversion of a newline character in the message.
They are different in the actual character string, because the Antlr4 lexer does not transform the string value of the matched token in any way. That's your responsibility.
In computing, it is very often the case that what you see is not what you got. What you see is just what you see, and a lot of computational power has gone into creating that vision for you. By the same token, nothing guarantees that the vision is an unambiguous, or even useful, representation of the actual values. The best you can say for it is that it's probably more useful than trying to read the data as individual bits. (And, indeed, the individual bits are not physical objects either; despite the common refrain, you could completely disassemble a computer and examine it with an arbitrarily powerful microscope, and you will not see a single 1 or 0.)
That might seem like irrelevant philosophizing, but it has a real consequence: when you're debugging and you see something that makes you think, "that looks wrong", you need to consider two possibilities: maybe the underlying data is incorrect, but may it's the process which rendered the representation which is at fault. In this case, I'd say that the failure of escapeWhitespace to convert backslash characters into pairs of backslashes is a bug, but that's a value judgement on my part. Anyway, the function is not critical to the operation of Antlr4, and you could easily replace it.

Why is the following piece of Lua code, completely valid?

From my Lua knowledge (and according to what I have read in Lua manuals), I've always been under impression that an identifier in Lua is only limited to A-Z & a-z & _ & digits (and can not start using a digit nor be a reserved keyword i.e. local local = 123).
And now I have run into some (obfuscated) Lua program which uses all kind of weird characters for an identifier:
https://i.imgur.com/HPLKMxp.png
-- Most likely, copy+paste won't work. Download the file from https://tknk.io/7HHZ
print(_VERSION .. " " .. (jit and "JIT" or "non-JIT"))
local T = {}
T.math = T.math or {}
T.math.​â®â€‹âŞâ®â€‹­ď»żâ€Śâ€­âŽ­ = math.sin
T.math.â¬â€‹â­â¬â­â«â®â€­â€¬ = math.cos
for k, v in pairs(T.math) do print(k, v) end
Output:
Lua 5.1 JIT
â¬â€‹â­â¬â­â«â®â€­â€¬ function: builtin#45
​â®â€‹âŞâ®â€‹­ď»żâ€Śâ€­âŽ­ function: builtin#44
It is unclear to me, why is this set of characters allowed for an identifier?
In other words, why is it a completely valid Lua program?
Unlike some languages, Lua is not really defined by a formal specification, one which covers every contingency and entirely explains all of Lua's behavior. Something as simple as "what character set is a Lua file encoded in" isn't really explain in Lua's documentation.
All the docs say about identifiers is:
Names (also called identifiers) in Lua can be any string of letters, digits, and underscores, not beginning with a digit and not being a reserved word.
But nothing ever really says what a "letter" is. There isn't even a definition for what character set Lua uses. As such, it's essentially implementation-dependent. A "letter" is... whatever the implementation wants it to be.
So, let's say you're writing a Lua implementation. And you want users to be able to provide Unicode-encoded strings (that is, strings within the Lua text). Lua 5.3 requires this. But you also don't want them to have to use UTF-16 encoding for their files (also because lua_load gets sequences of bytes, not shorts). So your Lua implementation assumes the byte sequence it gets in lua_load is encoded in UTF-8, so that users can write strings that use Unicode characters.
When it comes to writing the lexer/parser part of this implementation, how do you handle this? The simplest, easiest way to handle UTF-8 is to... not handle UTF-8. Indeed, that's the whole point of that encoding. Since everything that Lua defines with specific symbols are encoded in ASCII, and ASCII text is also UTF-8 text with the same meaning, you can basically treat a UTF-8 string like an ASCII string. For in-Lua strings, you just copy the sequence of bytes between the start and end characters of the string.
So how do you go about lexing identifiers? Well, you could ask the question above. Or you could ask a much simpler question: is the character a space, control character, digit, or symbol? A "letter" is merely something that isn't one of those.
Lua defines what things it considers to be "symbols". ASCII can tell you what is a control character, space, and a digit. In such an implementation, any UTF-8 code unit with a value outside of ASCII is a letter. Even if technically, those code units decode into something Unicode thinks of as a "symbol", your lexer just threats it as a letter.
This simple form of UTF-8 lexing gives you fast performance and low memory overhead. You don't have to decode UTF-8 into Unicode codepoints, and you don't need a giant Unicode table to tell you whether a codepoint is a "symbol" or "space" or whatever. And of course, it's also something that would naturally fall out of many ASCII-based Lua implementations.
So most Lua implementations will do it this way, if only by accident. Doing something more would require deliberate effort.
It also allows a user to use Unicode character sequences as identifiers. That means that someone can easily write code in their native language (outside of keywords).
But it also means that obfuscators have lots of ways to create "identifiers" that are just strings of nonsensical bytes. Indeed, because there are multiple ways in Unicode to "spell" the same apparent Unicode string (unless you examine the bytes directly), obfuscators can rig up identifiers that appear when rendered in a text editor to all be the same text, while actually being different strings.
To clarify there is only one identifier T
T.math is sugar syntax for T["math"] this also extends to the obfuscate strings. It is perfectly valid to have a key contain any characters or even start with a number.
Now being able to use the . rather then [ ] does not work with a string that don't conform to the identifier's limitations. See Nicol Bolas' answer for a great break down of those limitations.

ASCII Representation of Hexadecimal

I have a string that, by using string.format("%02X", char), I've received the following:
74657874000000EDD37001000300
In the end, I'd like that string to look like the following:
t e x t NUL NUL NUL í Ó p SOH NUL ETX NUL (spaces are there just for clarification of characters desired in example).
I've tried to use \x..(hex#), string.char(0x..(hex#)) (where (hex#) is alphanumeric representation of my desired character) and I am still having issues with getting the result I'm looking for. After reading another thread about this topic: what is the way to represent a unichar in lua and the links provided in the answers, I am not fully understanding what I need to do in my final code that is acceptable for this to work.
I'm looking for some help in better understanding an approach that would help me to achieve my desired result provided below.
ETA:
Well I thought that I had fixed it with the following code:
function hexToAscii(input)
local convString = ""
for char in input:gmatch("(..)") do
convString = convString..(string.char("0x"..char))
end
return convString
end
It appeared to work, but didnt think about characters above 127. Rookie mistake. Now I'm unsure how I can get the additional characters up to 256 display their ASCII values.
I did the following to check since I couldn't truly "see" them in the file.
function asciiSub(input)
input = input:gsub(string.char(0x00), "<NUL>") -- suggested by a coworker
print(input)
end
I did a few gsub strings to substitute in other characters and my file comes back with the replacement strings. But when I ran into characters in the extended ASCII table, it got all forgotten.
Can anyone assist me in understanding a fix or new approach to this problem? As I've stated before, I read other topics on this and am still confused as to the best approach towards this issue.
The simple way to transform a base16-encoded string is just to
function unhex( input )
return (input:gsub( "..", function(c)
return string.char( tonumber( c, 16 ) )
end))
end
This is basically what you have, just a bit cleaner. (There's no need to say "(..)", ".." is enough – if you specify no captures, you'll automatically get the whole match. And while it might work if you write string.char( "0x"..c ), it's just evil – you concatenate lots of strings and then trigger the automatic conversion to numbers. Much better to just specify the base when explicitly converting.)
The resulting string should be exactly what went into the hex-dumper, no matter the encoding.
If you cannot correctly display the result, your viewer will also be unable to display the original input. If you used different viewers for the original input and the resulting output (e.g. a text editor and a terminal), try writing the output to a file instead and looking at it with the same viewer you used for the original input, then the two should be exactly the same.
Getting viewers that assume different encodings (e.g. one of the "old" 8-bit code pages or one of the many versions of Unicode) to display the same thing will require conversion between different formats, which tends to be quite complicated or even impossible. As you did not mention what encodings are involved (nor any other information like OS or programs used that might hint at the likely encodings), this could be just about anything, so it's impossible to say anything more specific on that.
You actually have a couple of problems:
First, make sure you know the meaning of the term character encoding, and that you know the difference between characters and bytes. A popular post on the topic is The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character Sets (No Excuses!)
Then, what encoding was used for the bytes you just received? You need to know this, otherwise you don't know what byte 234 means. For example it could be ISO-8859-1, in which case it is U+00EA, the character ê.
The characters 0 to 31 are control characters (eg. 0 is NUL). Use a lookup table for these.
Then, displaying the characters on the terminal is the hard part. There is no platform-independent way to display ê on the terminal. It may well be impossible with the standard print function. If you can't figure this step out you can search for a question dealing specifically with how to print Unicode text from Lua.

Why Isn't dchar the Standard Character Type in D?

Just browsing the digitalmars.D.learn forum, and D-related question on StackOverflow, it seems to me that a major point of mistakes for a beginner D programmer (me included) is the difference in usage and abilities of char, wchar, dchar, and the associated string types. This leads to problems such as the following:
error instantiating redBlackTree template
Cannot Slice Take!R from std.range in D?
std.algorithm.joiner(string[],string) - why result elements are dchar and not char?
I know it must be for backwards compatibility reasons and familiarity for developers coming from C++ or C, but I think a fairly compelling argument can be made that this possible gain is offset by the problems experienced by those same developers when they try something non-trivial with a char or string and expect it to work as it would in C/C++, only to have it fail in difficult-to-debug ways.
To stave off a lot of these problems, I've seen experienced members of the D development community time and time again tell the inexperienced coder to use dchar to avoid such problems, which begs the question of why is a char not a 32-bit unicode character by default, with 8-bit ASCII characters relegated to achar or something similar, to be touched only if necessary?
Personally, I wish that char didn't exist and that instead of char, wchar, and dchar, we had something more like utf8, utf16, and utf32. Then everyone would be immediately forced to realize that char was not what should be used for individual characters, but that's not the way it went. I'd say that it's almost certainly the case that char was simply taken from C/C++ and then the others were added to improve Unicode support. After all, there's nothing fundamentally wrong with char. It's just that so many programmers have the mistaken understanding that char is always a character (which isn't necessarily true even in C/C++). But Walter Bright has a very good understanding of Unicode and seems to think that everyone else should as well, so he tends to make decisions with regards to Unicode which work extremely well if you understand Unicode but don't work quite as well if you don't (and most programmers don't). D pretty much forces you to come to at least a basic understanding of Unicode, which isn't all bad, but it does trip some people up.
But the reality of the matter is that while it makes good sense to use dchar for individual characters, it generally doesn't make sense to use it for strings. Sometimes, that's what you need, but UTF-32 requires way more space than UTF-8 does. That could affect performance and definitely affects the memory footprint of your programs. And a lot of string processing doesn't need random access at all. So, having UTF-8 strings as the default makes far more sense than having UTF-32 strings be the default.
The way strings are managed in D generally works extremely well. It's just that the name char has an incorrect connotation for many people, and the language unfortunately chooses for character literals to default to char rather than dchar in many cases.
I think a fairly compelling argument can be made that this possible gain is offset by the problems experienced by those same developers when they try something non-trivial with a char or string and expect it to work as it would in C/C++, only to have it fail in difficult-to-debug ways.
The reality of the matter is that strings in C/C++ work the same way that they do in D, only they don't protect you from being ignorant or stupid, unlike in D. char in C/C++ is always 8 bits and is typically treated as a UTF-8 code unit by the OS (at least in *nix land - Windows does weird things for the encoding for char and generally requires you to use wchar_t for Unicode). Certainly, any Unicode strings that you have in C/C++ are in UTF-8 unless you explicitly use a string type which uses a different encoding. std::string and C strings all operate on code units rather than code points. But the average C/C++ programmer treats them as if each of their elements were a whole character, which is just plain wrong unless you're only using ASCII, and in this day and age, that's often a very bad assumption.
D takes the route of actually building proper Unicode support into the language and into its standard library. This forces you to come to at least a basic understanding of Unicode and often makes it harder to screw it up while giving those who do understand it extremely powerful tools for managing Unicode strings not only correctly but efficiently. C/C++ just side steps the issue and lets programmers step on Unicode land mines.
I understood the question as "Why dchar is not used in strings by default?"
dchar is a UTF-32 code unit. You rarely want to deal with UTF-32 code units because you waste too much space, especially if you deal only with ASCII strings.
Using UTF-8 code units (adequate type in D is char) is much more space-efficient.
D string is an immutable(char)[], ie an array of UTF-8 code units.
Yes, arguably dealing with UTF-32 code-units may boost the speed of your application if you constantly do random-access with strings. But if you know that you are going to do that with some particular text, use the dstring type in that case. This said, you should now understand why D treats strings as dchar ranges.
Because of combining characters, even dchar can't truly hold all Unicode characters (in any way that humans want to think of it) and can't be indexed directly (see the end of this post for examples).

What to do when unescapable character(s) are escaped?

In designing of a (mini)language:
When there are certain characters that should be escaped to lose special meanings (like quotes in some programming languages), what should be done, especially from a security perspective, when characters that are not escapable (e.g. normal characters which never have special meaning) are escaped? Should an error be "error"ed, or should the character be discarded, or should it be in the output the same as if it was not escaped?
Example:
In a simple language where strings are delimited by double-quotes("), and any quotes in a given string are escaped with a back-slash(\): for input "We \said, \"We want Moshiach Now\"" -- what would should be done with the letter s in said which is escaped?
I prefer the lexer to whine when this occurs. A lexer/parser should be tight about syntax; one can always loosen it up later. If you are sloppy, you'll find you can't retract a decision you didn't think you made.
Assume that you initially decide to treat " backslash not-an-escape " as that pair of characters, and the "T" is
not-an-escape today. Sometime later you decide to extend the language, and want "\T" to mean something special, and you change your language.
You'll find an angry mob of programmers storming your design castle,
because for them, "\T" means "\" "T" (or "T" depending on your default decision),
and you just broke their code. You hang your head in shame, retract the decision,
and then realize... oops, there are no more available escape characters!
This lesson goes for any piece of syntax that isn't well defined in your language. If it isn't explicitly legal, it should be implicitly illegal and your compiler should check it. Or you'll never be able to extend your successful language.
If your language isn't going to be successful, you may not care as much.
Well, one way to solve the problem is for the backslash to just mean backslash when it precedes a non-escapable character. That's what Python does:
>>> print "a\tb"
a b
>>> print "a\tb\Rc"
a b\Rc
Obviously, most systems take the escape character to mean "take the next character verbatim", so escaping a "non-escapable" character is usually harmless. The problem later happens when you get to comparisons and such, where the literal text does not represent the actual value (that's where you see a lot of issues securitywise, especially with things like URLs).
So on the one hand, you can only accept a limited number of escaped characters. In that sense, you have an "escape sequence", rather than an escaped character (the \x is the entire sequence rather than a \ followed by an x). That's like the most safe mechanism, and it's not really burdensome to write.
The other option is to ensure that you you "canonicalizing" everything you compare, through some ruleset. This typically means removing all of the escape sequences properly up front, before comparison and comparing only the final values rather than the literals.
Most systems interpret the slash as Will Hartung says, except for alphanumerics which are variously used as aliases for control codes, character classes, word boundaries, the start of hex sequences, case region markers, hex or octal digits, etc. \s in particular often means white-space in perl5 style regexs. JavaScript, which interprets it as 's' in one context and as whitespace in another suffers from subtle bugs because of this choice. Consider /foo\sbar/ vs new RegExp('foo\sbar').

Resources