semantic segmentation for large images - machine-learning

I am working on a limited number of large size images, each of which can have 3072*3072 pixels. To train a semantic segmentation model using FCN or U-net, I construct a large sample of training sets, each training image is 128*128.
In the prediction stage, what I do is to cut a large image into small pieces, the same as trainning set of 128*128, and feed these small pieces into the trained model, get the predicted mask. Afterwards, I just stitch these small patches together to get the mask for the whole image. Is this the right mechanism to perform the semantic segmentation against the large images?

Your solution is often used for this kind of problem. However, I would argue that it depends on the data if it truly makes sense. Let me give you two examples you can still find on kaggle.
If you wanted to mask certain parts of satellite images, you would probably get away with this approach without a drop in accuracy. These images are highly repetitive and there's likely no correlation between the segmented area and where in the original image it was taken from.
If you wanted to segment a car from its background, it wouldn't be desirable to break it into patches. Over several layers the network will learn the global distribution of a car in the frame. It's very likely that the mask is positive in the middle and negative in the corners of the image.
Since you didn't give any specifics what you're trying to solve, I can only give a general recommendation: Try to keep the input images as large as your hardware allows. In many situation I would rather downsample the original images than breaking it down into patches.
Concerning the recommendation of curio1729, I can only advise against training on small patches and testing on the original images. While it's technically possible thanks to fully convolutional networks, you're changing the data to an extend, that might very likely hurt performance. CNNs are known for their extraction of local features, but there's a large amount of global information that is learned over the abstraction of multiple layers.

Input image data:
I would not advice feeding the big image (3072x3072) directly into the caffe.
Batch of small images will fit better into the memory and parallel programming will too come into play.
Data Augmentation will also be feasible.
Output for big Image:
As for the output of big Image, you better recast the input size of FCN to 3072x3072 during test phase. Because, layers of FCN can accept inputs of any size.
Then you will get 3072x3072 segmented image as output.

Related

TensorFlow for image recognition, size of images

How can size of an image effect training the model for this task?
My current training set holds images that are 2880 X 1800, but I am worried this may be too large to train. In total my sample size will be about 200-500 images.
Would this just mean that I need more resources (GPU,RAM, Distribution) when training my model?
If this is too large, how should I go about resizing? -- I want to mimic real-world photo resolutions as best as possible for better accuracy.
Edit:
I would also be using TFRecord format for the image files
Your memory and processing requirements will be proportional to the pixel size of your image. Whether this is too large for you to process efficiently will depend on your hardware constraints and the time you have available.
With regards to resizing the images there is no one answer, you have to consider how to best preserve information that'll be required for your algorithm to learn from your data while removing information that won't be useful. Reducing the size of your input images won't necessarily be a negative for accuracy. Consider two cases:
Handwritten digits
Here the images could be reduced considerably in size and maintain all the structural information necessary to be correctly identified. Have a look at the MNIST data set, these images are distributed at 28 x 28 resolution and identifiable to 99.7%+ accuracy.
Identifying Tree Species
Imagine a set of images of trees where individual leaves could help identify species. Here you might find that reducing the image size reduces small scale detail on leaf shape in a way that's detrimental to the model, but you might find that you get a similar result with a tight crop (which preserves individual leaves) rather than an image resize. If this is the case you may find that creating multiple crops from the same image gives you an augmented data set for training that considerably improves results (which is something to consider, if possible, given your training set is very small)
Deep learning models are achieving results around human level in many image classification tasks: if you struggle to identify your own images then it's less likely you'll train an algorithm to. This is often a useful starting point when considering the level of scaling that might be appropriate.
If you are using GPUs to train, this will def affect your training time. Tensorflow does most of the GPU allocation so you don't have to worry about that. But with big photos you will be experiencing long training time although your dataset is small. You should consider data-augmentation.
You could complement your resizing with the data-augmentation. Resize in equal dimensions and then perform reflection and translation (as in geometric movement)
If your images are too big, your GPU might run out of memory before it can start training because it has to store the convolution outputs on its memory. If that happens, you can do some of the following things to reduce memory consumption:
resize the image
reduce batch size
reduce model complexity
To resize your image, there are many scripts just one Google search away, but I will add that in your case 1440 by 900 is probably a sweet spot.
Higher resolution images will result in a higher training time and an increased memory consumption (mainly GPU memory).
Depending on your concrete task, you might want to reduce the image size in order to therefore fit a reasonable batch size of let's say 32 or 64 on the GPU - for stable learning.
Your accuracy is probably affected more by the size of your training set. So instead of going for image size, you might want to go for 500-1000 sample images. Recent publications like SSD - Single Shot MultiBox Detector achieve high accuracy values like an mAP of 72% on the PascalVOC dataset - with "only" using 300x300 image resolution.
Resizing and augmentation: SSD for instance just scales every input image down to 300x300, independent of the aspect ratio - does not seem to hurt. You could also augment your data by mirroring, translating, ... etc (but I assume there are built-in methods in Tensorflow for that).

image augmentation algorithms for preparing deep learning training set

To prepare large amounts of data sets for training deep learning-based image classification models, we usually have to rely on image augmentation methods. I would like to know what are the usual image augmentation algorithms, are there any considerations when choosing them?
The litterature on data augmentation is very very large and very dependent on your kind of applications.
The first things that come to my mind are the galaxy competition's rotations and Jasper Snoeke's data augmentation.
But really all papers have their own tricks to get good scores on special datasets for exemples stretching the image to a specific size before cropping it or whatever and this in a very specific order.
More practically to train models on the likes of CIFAR or IMAGENET use random crops and random contrast, luminosity perturbations additionally to the obvious flips and noise addition.
Look at the CIFAR-10 tutorial on TF website it is a good start. Plus TF now has random_crop_and_resize() which is quite useful.
EDIT: The papers I am referencing here and there.
It depends on the problem you have to address, but most of the time you can do:
Rotate the images
Flip the image (X or Y symmetry)
Add noise
All the previous at the same time.

Why use sliding windows with convolutional neural nets in object detection?

I read that CNNs (with both convolution and max-pooling layers) are shift-invariant, but most object detection methods used a sliding window detector with non-maximum suppression. Is it necessary to use sliding windows with CNNs when doing object detection?
Basically, instead of training the network on small 50x50 patches of images containing the desired object, why not train on entire images where the object is present somewhere? All I can think of is practical/performance reasons (doing forward pass on smaller patches instead of whole images), but is there also a theoretical explanation I'm overlooking?
internally, CNN is doing a sliding window. Convolution in terms of 2d image is nothing more than a linear filter applied in the sliding window manner. This is simply nice, mathematical expression of the very same operation, which helps us do neat optimization. Max pooling on the other hand helps us to be robust in terms of small shifts/noise. So efficiently feeding image to the network is using (many!) sliding windows on it. Can we pass big images instead of small ones? Sure, but you wil get extremely big tensors (just compute how many numbers you will need, this is huge), and you will get really complex optimization problem. Nowadays we optimize in milions-dimensional space. Working with whole images might lead to bilions (or even bigger) number of dimensions. Optimization complexity grows exponentialy with the growth of the dimension, thus you will end up with extremely slow method (not in terms of computation itself - but convergence).

Image size consideration for Haar cascades

The OpenCV Haar cascade classifier seems to use 24x24 images of faces as its positive training data. I have two questions regarding this:
What are the consideration that go into selecting the training image size, besides the fact that larger training images require more processing?
For non-square images, some people have chosen to keep one dimension at 24px, and expand the other dimension as necessary (to, say 100-200px). Is this the correct strategy?
How does one go about deciding the size of the training images (this is a variant of question 1)
I honestly believe that there are far better parameters to be tweaked than the image size. Even so, it's a question of fine-to-coarse detection - at finer levels, you gain detail and at coarser levels, you gain structure. Also, there is a trade off: with 24x24 detection regions, there are about ~160,000 possible rectangular (haar-like) features, so increasing or decreasing also affects this number for both training/testing (this is why boosting is used to select a small subset of discriminative features).
As you said, this is because his target was different (i.e. a pen). I think it is sensible to introduce a priori aspect ratio information to the cascade training, otherwise you would be getting detections that have square bounding boxes for a pen detector and probably suffer in performance because the training stage is picking up a larger background region around the pen.
See my first answer. I think this is largely empirical. There are techniques for either feature scaling or building image pyramids (e.g. see this work) that also mitigate the usefulness of highly controlling the choice of training target image sizes too.

find mosquitos' head in the image

I have images of mosquitos similar to these ones and I would like to automatically circle around the head of each mosquito in the images. They are obviously in different orientations and there are random number of them in different images. some error is fine. Any ideas of algorithms to do this?
This problem resembles a face detection problem, so you could try a naïve approach first and refine it if necessary.
First you would need to recreate your training set. For this you would like to extract small images with examples of what is a mosquito head or what is not.
Then you can use those images to train a classification algorithm, be careful to have a balanced training set, since if your data is skewed to one class it would hit the performance of the algorithm. Since images are 2D and algorithms usually just take 1D arrays as input, you will need to arrange your images to that format as well (for instance: http://en.wikipedia.org/wiki/Row-major_order).
I normally use support vector machines, but other algorithms such as logistic regression could make the trick too. If you decide to use support vector machines I strongly recommend you to check libsvm (http://www.csie.ntu.edu.tw/~cjlin/libsvm/), since it's a very mature library with bindings to several programming languages. Also they have a very easy to follow guide targeted to beginners (http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf).
If you have enough data, you should be able to avoid tolerance to orientation. If you don't have enough data, then you could create more training rows with some samples rotated, so you would have a more representative training set.
As for the prediction what you could do is given an image, cut it using a grid where each cell has the same dimension that the ones you used on your training set. Then you pass each of this image to the classifier and mark those squares where the classifier gave you a positive output. If you really need circles then take the center of the given square and the radius would be the half of the square side size (sorry for stating the obvious).
So after you do this you might have problems with sizes (some mosquitos might appear closer to the camera than others) , since we are not trained the algorithm to be tolerant to scale. Moreover, even with all mosquitos in the same scale, we still might miss some of them just because they didn't fit in our grid perfectly. To address this, we will need to repeat this procedure (grid cut and predict) rescaling the given image to different sizes. How many sizes? well here you would have to determine that through experimentation.
This approach is sensitive to the size of the "window" that you are using, that is also something I would recommend you to experiment with.
There are some research may be useful:
A Multistep Approach for Shape Similarity Search in Image Databases
Representation and Detection of Shapes in Images
From the pictures you provided this seems to be an extremely hard image recognition problem, and I doubt you will get anywhere near acceptable recognition rates.
I would recommend a simpler approach:
First, if you have any control over the images, separate the mosquitoes before taking the picture, and use a white unmarked underground, perhaps even something illuminated from below. This will make separating the mosquitoes much easier.
Then threshold the image. For example here i did a quick try taking the red channel, then substracting the blue channel*5, then applying a threshold of 80:
Use morphological dilation and erosion to get rid of the small leg structures.
Identify blobs of the right size to be moquitoes by Connected Component Labeling. If a blob is large enough to be two mosquitoes, cut it out, and apply some more dilation/erosion to it.
Once you have a single blob like this
you can find the direction of the body using Principal Component Analysis. The head should be the part of the body where the cross-section is the thickest.

Resources