Neural Network - Should I Remove All Derived / Calculated Variables? - machine-learning

I'm using a neural network to control the movement of a character in a game. I've currently got a huge amount of dimensions and in the interest of trimming them to improve storage and code manageability, I'm considering removing all derived variables i.e. any variable which can be calculated from data already sent into to the network.
An example of this would be the relationship between a) position, b) velocity, and c) acceleration along a path. Currently, I send the last 50 data points of all three to the NN to help it decide its next movement. However, I wonder if system control / error could be minimized just as easily by sending only position. Theoretically the neural network should be able to derive the velocity and acceleration at a point in time entirely on it's own given the position history.
Generally, is dimension reduction in this capacity recommended? Why or why not?
I know the oft recommendation in this scenario is just to test it and see what happens, but in this case there are so many variables here that it would take days to test, so I was hoping to hear anyone's experience given this type of situation and what they surmise the general rule to be.
Bonus question--would this assessment / decision be different for a neural network (intent on mapping functions to data) as opposed to a random forest (seems to use more of a nearest neighbor approach).
Thanks!!

Implement PCA to reduce the number of features. They reduced features will have unusual units like [positionvelocityacceleration]. However, if you do PCA correctly you can retain a feature set that has 99% variance of the original set.
Then use the new feature set in your NN.
Reducing dimensions is recommended to speed-up algorithms because, as you observed, there is a lot of similarity between your features.

Related

Applying machine learning to training data parameters

I'm new to machine learning, and I understand that there are parameters and choices that apply to the model you attach to a certain set of inputs, which can be tuned/optimised, but those inputs obviously tie back to fields you generated by slicing and dicing whatever source data you had in a way that makes sense to you. But what if the way you decided to model and cut up your source data, and therefore training data, isn't optimal? Are there ways or tools that extend the power of machine learning into, not only the model, but the way training data was created in the first place?
Say you're analysing the accelerometer, GPS, heartrate and surrounding topography data of someone moving. You want to try determine where this person is likely to become exhausted and stop, assuming they'll continue moving in a straight line based on their trajectory, and that going up any hill will increase heartrate to some point where they must stop. If they're running or walking modifies these things obviously.
So you cut up your data, and feel free to correct how you'd do this, but it's less relevant to the main question:
Slice up raw accelerometer data along X, Y, Z axis for the past A number of seconds into B number of slices to try and profile it, probably applying a CNN to it, to determine if running or walking
Cut up the recent C seconds of raw GPS data into a sequence of D (Lat, Long) pairs, each pair representing the average of E seconds of raw data
Based on the previous sequence, determine speed and trajectory, and determine the upcoming slope, by slicing the next F distance (or seconds, another option to determine, of G) into H number of slices, profiling each, etc...
You get the idea. How do you effectively determine A through H, some of which would completely change the number and behaviour of model inputs? I want to take out any bias I may have about what's right, and let it determine end-to-end. Are there practical solutions to this? Each time it changes the parameters of data creation, go back, re-generate the training data, feed it into the model, train it, tune it, over and over again until you get the best result.
What you call your bias is actually the greatest strength you have. You can include your knowledge of the system. Machine learning, including glorious deep learning is, to put it bluntly, stupid. Although it can figure out features for you, interpretation of these will be difficult.
Also, especially deep learning, has great capacity to memorise (not learn!) patterns, making it easy to overfit to training data. Making machine learning models that generalise well in real world is tough.
In most successful approaches (check against Master Kagglers) people create features. In your case I'd probably want to calculate magnitude and vector of the force. Depending on the type of scenario, I might transform (Lat, Long) into distance from specific point (say, point of origin / activation, or established every 1 minute) or maybe use different coordinate system.
Since your data in time series, I'd probably use something well suited for time series modelling that you can understand and troubleshoot. CNN and such are typically your last resort in majority of cases.
If you really would like to automate it, check e.g. Auto Keras or ludwig. When it comes to learning which features matter most, I'd recommend going with gradient boosting (GBDT).
I'd recommend reading this article from AirBnB that takes deeper dive into journey of building such systems and feature engineering.

How to evolve weights of a neural network in Neuroevolution?

I'm new to Artificial Neural Networks and NeuroEvolution algorithms in general. I'm trying to implement the algorithm called NEAT (NeuroEvolution of Augmented Topologies), but the description in original public paper missed the method of how to evolve the weights of a network, it says
Connection weights mutate as in any NE system, with each connection either perturbed or not at each generation
I've done some searching about how to mutate weights in NE systems, but can't find any detailed description, unfortunately.
I know that while training a neural network, usually the backpropagation algorithm is used to correct the weights, but it only works if you have a fixed topology (structure) through generations and you know the answer to the problem. In NeuroEvolution, you don't know the answer, you have only the fitness function, so it's not possible to use backpropagation here.
I have some experience with training a fixed-topology NN using a genetic algorithm (What the paper refers to as the "traditional NE approach"). There are several different mutation and reproduction operators we used for this and we selected those randomly.
Given two parents, our reproduction operators (could also call these crossover operators) included:
Swap either single weights or all weights for a given neuron in the network. So for example, given two parents selected for reproduction either choose a particular weight in the network and swap the value (for our swaps we produced two offspring and then chose the one with the best fitness to survive in the next generation of the population), or choose a particular neuron in the network and swap all the weights for that neuron to produce two offspring.
swap an entire layer's weights. So given parents A and B, choose a particular layer (the same layer in both) and swap all the weights between them to produce two offsping. This is a large move so we set it up so that this operation would be selected less often than the others. Also, this may not make sense if your network only has a few layers.
Our mutation operators operated on a single network and would select a random weight and either:
completely replace it with a new random value
change the weight by some percentage. (multiply the weight by some random number between 0 and 2 - practically speaking we would tend to constrain that a bit and multiply it by a random number between 0.5 and 1.5. This has the effect of scaling the weight so that it doesn't change as radically. You could also do this kind of operation by scaling all the weights of a particular neuron.
add or subtract a random number between 0 and 1 to/from the weight.
Change the sign of a weight.
swap weights on a single neuron.
You can certainly get creative with mutation operators, you may discover something that works better for your particular problem.
IIRC, we would choose two parents from the population based on random proportional selection, then ran mutation operations on each of them and then ran these mutated parents through the reproduction operation and ran the two offspring through the fitness function to select the fittest one to go into the next generation population.
Of course, in your case since you're also evolving the topology some of these reproduction operations above won't make much sense because two selected parents could have completely different topologies. In NEAT (as I understand it) you can have connections between non-contiguous layers of the network, so for example you can have a layer 1 neuron feed another in layer 4, instead of feeding directly to layer 2. That makes swapping operations involving all the weights of a neuron more difficult - you could try to choose two neurons in the network that have the same number of weights, or just stick to swapping single weights in the network.
I know that while training a NE, usually the backpropagation algorithm is used to correct the weights
Actually, in NE backprop isn't used. It's the mutations performed by the GA that are training the network as an alternative to backprop. In our case backprop was problematic due to some "unorthodox" additions to the network which I won't go into. However, if backprop had been possible, I would have gone with that. The genetic approach to training NNs definitely seems to proceed much more slowly than backprop probably would have. Also, when using an evolutionary method for adjusting weights of the network, you start needing to tweak various parameters of the GA like crossover and mutation rates.
In NEAT, everything is done through the genetic operators. As you already know, the topology is evolved through crossover and mutation events.
The weights are evolved through mutation events. Like in any evolutionary algorithm, there is some probability that a weight is changed randomly (you can either generate a brand new number or you can e.g. add a normally distributed random number to the original weight).
Implementing NEAT might seem an easy task but there is a lot of small details that make it fairly complicated in the end. You might want to look at existing implementations and use one of them or at least be inspired by them. Everything important can be found at the NEAT Users Page.

Random Perturbation of Data to get Training Data for Neural Networks

I am working on Soil Spectral Classification using neural networks and I have data from my Professor obtained from his lab which consists of spectral reflectance from wavelength 1200 nm to 2400 nm. He only has 270 samples.
I have been unable to train the network for accuracy more than 74% since the training data is very less (only 270 samples). I was concerned that my Matlab code is not correct, but when I used the Neural Net Toolbox in Matlab, I got the same results...nothing more than 75% accuracy.
When I talked to my Professor about it, he said that he does not have any more data, but asked me to do random perturbation on this data to obtain more data. I have research online about random perturbation of data, but have come up short.
Can someone point me in the right direction for performing random perturbation on 270 samples of data so that I can get more data?
Also, since by doing this, I will be constructing 'fake' data, I don't see how the neural network would be any better cos isn't the point of neural nets using actual real valid data to train the network?
Thanks,
Faisal.
I think trying to fabricate more data is a bad idea: you can't create anything with higher information content than you already have, unless you know the true distribution of the data to sample from. If you did, however, you'd be able to classify with the Bayes optimal error rate, which would be impossible to beat.
What I'd be looking at instead is whether you can alter the parameters of your neural net to improve performance. The thing that immediately springs to mind with small amounts of training data is your weight regulariser (are you even using regularised weights), which can be seen as a prior on the weights if you're that way inclined. I'd also look at altering the activation functions if you're using simple linear activations, and the number of hidden nodes in addition (with so few examples, I'd use very few, or even bypass the hidden layer entirely since it's hard to learn nonlinear interactions with limited data).
While I'd not normally recommend it, you should probably use cross-validation to set these hyper-parameters given the limited size, as you're going to get unhelpful insight from a 10-20% test set size. You might hold out 10-20% for final testing, however, so as to not bias the results in your favour.
First, some general advice:
Normalize each input and output variable to [0.0, 1.0]
When using a feedforward MLP, try to use 2 or more hidden layers
Make sure your number of neurons per hidden layer is big enough, so the network is able to tackle the complexity of your data
It should always be possible to get to 100% accuracy on a training set if the complexity of your model is sufficient. But be careful, 100% training set accuracy does not necessarily mean that your model does perform well on unseen data (generalization performance).
Random perturbation of your data can improve generalization performance, if the perturbation you are adding occurs in practice (or at least similar perturbation). This works because this means teaching your network on how the data could look different but still belong to the given labels.
In the case of image classification, you could rotate, scale, noise, etc. the input image (the output stays the same, naturally). You will need to figure out what kind of perturbation could apply to your data. For some problems this is difficult or does not yield any improvement, so you need to try it out. If this does not work, it does not necessarily mean your implementation or data are broken.
The easiest way to add random noise to your data would be to apply gaussian noise.
I suppose your measures have errors associated with them (a measure without errors has almost no meaning). For each measured value M+-DeltaM you can generate a new number with N(M,DeltaM), where n is the normal distribution.
This will add new points as experimental noise from previous ones, and will add help take into account exprimental errors in the measures for the classification. I'm not sure however if it's possible to know in advance how helpful this will be !

Appropriateness of an artificial neural network in pose estimation

I am working on a project for uni which requires markerless relative pose estimation. To do this I take two images and match n features in certain locations of the picture. From these points I can find vectors between these points which, when included with distance, can be used to estimate the new postition of the camera.
The project is required to be deplyoable on mobile devices so the algorithm needs to be efficient. A thought I had to make it more efficient would be to take these vectors and put them into a Neural Network which could take the vectors and output an estimation of the xyz movement vector based on the input.
The question I have is if a NN could be appropriate for this situation if sufficiently trained? and, if so, how would I calculate the number of hidden units I would need and what the best activation function would be?
Using a neural network for your application can very well work, however, I feel you will need a lot of training samples to allow the network to generalize. Of course, this also depends on the type and number of poses you're dealing with. It sounds to me that with some clever maths it might be possible to derive the movement vector directly from the input vector -- if by any chance you can come up with a way of doing that (or provide more information so others can think about it too), that would very much be preferred, as in that case you would include prior knowledge you have about the task instead of relying on the NN to learn it from data.
If you decide to go ahead with the NN approach, keep the following in mind:
Divide your data into training and validation set. This allows you to make sure that the network doesn't overfit. You train using the training set and determine the quality of a particular network using the error on the validation set. The ratio of training/validation depends on the amount of data you have. A large validation set (e.g., 50% of your data) will allow more precise conclusions about the quality of the trained network, but often you have too few data to afford this. However, in any case I would suggest to use at least 10% of your data for validation.
As to the number of hidden units, a rule of thumb is to have at least 10 training examples for each free parameter, i.e., each weight. So assuming you have a 3-layer network with 4 inputs, 10 hidden units, and 3 output units, where each hidden unit and the output units have additionally a bias weight, you would have (4+1) * 10 + (10+1) * 3 = 83 free parameters/weights. In general you should experiment with the number of hidden units and also the number of hidden layers. From my experience 4-layer networks (i.e., 2 hidden layers) work better than 3-layer network, but that depends on the problem. Since you also have the validation set, you can find out what network architecture and size works without having to fear overfitting.
For the activation function you should use some sigmoid function to allow for non-linear behavior. I like the hyperbolic tangent for its symmetry, but from my experience you can just as well use the logistic function.

Most appropriate normalization / transformation method for skewed features?

I am trying to pre-process biological data to train a neural network and despite an extensive search and repetitive presentation of the various normalization methods I am none the wiser as to which method should be used when. In particular I have a number of input variables which are positively skewed and have been trying to establish whether there is a normalisation method that is most appropriate.
I was also worried about whether the nature of these inputs would affect performance of the network and as such have experimented with data transformations (log transformation in particular). However some inputs have many zeros but may also be small decimal values and seem to be highly affected by a log(x + 1) (or any number from 1 to 0.0000001 for that matter) with the resulting distribution failing to approach normal (either remains skewed or becomes bimodal with a sharp peak at the min value).
Is any of this relevant to neural networks? ie. should I be using specific feature transformation / normalization methods to account for the skewed data or should I just ignore it and pick a normalization method and push ahead?
Any advice on the matter would be greatly appreciated!
Thanks!
As features in your input vector are of different nature, you should use different normalization algorithms for every feature. Network should be feeded by uniformed data on every input for better performance.
As you wrote that some data is skewed, I suppose you can run some algoritm to "normalize" it. If applying logarithm does not work, perhaps other functions and methods such as rank transforms can be tried out.
If the small decimal values do entirely occur in a specific feature, then just normalize it in specific way, so that they get transformed into your work range: either [0, 1] or [-1, +1] I suppose.
If some inputs have many zeros, consider removing them from main neural network, and create additional neural network which will operate on vectors with non-zeroed features. Alternatively, you may try to run Principal Component Analysis (for example, via Autoassociative memory network with structure N-M-N, M < N) to reduce input space dimension and so eliminate zeroed components (they will be actually taken into account in the new combined inputs somehow). BTW, new M inputs will be automatically normalized. Then you can pass new vectors to your actual worker neural network.
This is an interesting question. Normalization is meant to keep features' values in one scale to facilitate the optimization process.
I would suggest the following:
1- Check if you need to normalize your data. If, for example, the means of the variables or features are within same scale of values, you may progress with no normalization. MSVMpack uses some normalization check condition for their SVM implementation. If, however, you need to do so, you are still advised to run the models on the data without Normalization.
2- If you know the actual maximum or minimum values of a feature, use them to normalize the feature. I think this kind of normalization would preserve the skewedness in values.
3- Try decimal value normalization with other features if applicable.
Finally, you are still advised to apply different normalization techniques and compare the MSE for evey technique including z-score which may harm the skewedness of your data.
I hope that I have answered your question and gave some support.

Resources