Convert from Flux to Mono - project-reactor

How can I convert from a Flux with 1 element to a Mono?
Flux.fromArray(arrayOf(1,2,1,1,1,2))
.distinct()
.take(1)
How do I make this a Mono(1)?

Instead of take(1), you could use next().
This will transform the Flux into a valued Mono by taking the first emitted item, or an empty Mono if the Flux is empty itself.

Here is a list:
Flux#single will work if there is one element from Flux. Eg: flux.take(1).single();
Flux#next will get you the first element. Eg: flux.next();
Flux#last for last element. Eg: flux.last();
Flux#singleOrEmpty is similar to Optional. Eg: flux.take(0).singleOrEmpty();
Flux#collect, it depends on use case.
flux.collect(Collectors.reducing((i1, i2) -> i1))
.map(op -> op.get());
Flux#elementAt for i'th index. Eg: flux.elementAt(1);
Flux#shareNext for first found element. flux.shareNext();
Flux#reduce for reduction op. Eg: flux.reduce((i1,i2) -> i1);

Or,you could use single() on the filtered Flux

Also the very simple way is to use Mono.from()
Mono<Integer> mono = Mono.from(flux);
If your flux has more than one element, then it will just take the first element emitted by the flux.

Related

How to return empty when reducing a flux

Given this simplified sample code:
Flux.empty()
.cast(Integer.class)
.reduce(Integer.valueOf(1), (i,j) -> i+j)
.subscribe(System.out::println);
How to achieve that the result of the reduce operation is also empty?
You can't with this particular variant. Half the purpose of the Integer.valueOf(1) is to provide a seed that ensures there's a value even if the source is empty.
However you can use the variant without a seed/seed supplier:
Flux.empty()
.cast(Integer.class)
.reduce((i,j) -> i+j)
.subscribe(System.out::println);
An empty sequence or single-valued sequence will be reproduced as-is (the javadoc is maybe a bit unclear on that), so:
the code above would produce an empty Mono.
replacing Flux.empty().cast(Integer.class) with Flux.just(1) would produce a Mono that emits 1.
replacing with Flux.just(3, 4) would produce a Mono that emits 7

f# deedle filter data frame based on a list

I wanted to filter a Deedle dataframe based on a list of values how would I go about doing this?
I had an idea to use the following code below:
let d= df1|>filterRowValues(fun row -> row.GetAs<float>("ts") = timex)
However the issue with this is that it is only based on one variable, I then thought of combining this with a for loop and an append function:
for i in 0.. recd.length -1 do
df2.Append(df1|>filterRowValues(fun row -> row.GetAs<float>("ts") = recd.[i]))
This does not work either however and there must be a better way of doing this without using a for loop. In R I could for instance using an %in%.
You can use the F# set type to create a set of the values that you are interested. In the filtering, you can then check whether the set contains the actual value for the row.
For example, say that you have recd of type seq<float>. Then you should be able to write:
let recdSet = set recd
let d = df1 |> Frame.filterRowValues (fun row ->
recdSet.Contains(row.GetAs<float>("ts"))
Some other things that might be useful:
You can replace row.GetAs<float>("ts") with just row?ts (which always returns float and works only when you have a fixed name, like "ts", but it makes the code nicer)
Comparing float values might not be the best thing to do (because of floating point imprecisions, this might not always work as expected).

Creating a valid function declaration from a complex tuple/list structure

Is there a generic way, given a complex object in Erlang, to come up with a valid function declaration for it besides eyeballing it? I'm maintaining some code previously written by someone who was a big fan of giant structures, and it's proving to be error prone doing it manually.
I don't need to iterate the whole thing, just grab the top level, per se.
For example, I'm working on this right now -
[[["SIP",47,"2",46,"0"],32,"407",32,"Proxy Authentication Required","\r\n"],
[{'Via',
[{'via-parm',
{'sent-protocol',"SIP","2.0","UDP"},
{'sent-by',"172.20.10.5","5060"},
[{'via-branch',"z9hG4bKb561e4f03a40c4439ba375b2ac3c9f91.0"}]}]},
{'Via',
[{'via-parm',
{'sent-protocol',"SIP","2.0","UDP"},
{'sent-by',"172.20.10.15","5060"},
[{'via-branch',"12dee0b2f48309f40b7857b9c73be9ac"}]}]},
{'From',
{'from-spec',
{'name-addr',
[[]],
{'SIP-URI',
[{userinfo,{user,"003018CFE4EF"},[]}],
{hostport,"172.20.10.11",[]},
{'uri-parameters',[]},
[]}},
[{tag,"b7226ffa86c46af7bf6e32969ad16940"}]}},
{'To',
{'name-addr',
[[]],
{'SIP-URI',
[{userinfo,{user,"3966"},[]}],
{hostport,"172.20.10.11",[]},
{'uri-parameters',[]},
[]}},
[{tag,"a830c764"}]},
{'Call-ID',"90df0e4968c9a4545a009b1adf268605#172.20.10.15"},
{'CSeq',1358286,"SUBSCRIBE"},
["date",'HCOLON',
["Mon",44,32,["13",32,"Jun",32,"2011"],32,["17",58,"03",58,"55"],32,"GMT"]],
{'Contact',
[[{'name-addr',
[[]],
{'SIP-URI',
[{userinfo,{user,"3ComCallProcessor"},[]}],
{hostport,"172.20.10.11",[]},
{'uri-parameters',[]},
[]}},
[]],
[]]},
["expires",'HCOLON',3600],
["user-agent",'HCOLON',
["3Com",[]],
[['LWS',["VCX",[]]],
['LWS',["7210",[]]],
['LWS',["IP",[]]],
['LWS',["CallProcessor",[['SLASH',"v10.0.8"]]]]]],
["proxy-authenticate",'HCOLON',
["Digest",'LWS',
["realm",'EQUAL',['SWS',34,"3Com",34]],
[['COMMA',["domain",'EQUAL',['SWS',34,"3Com",34]]],
['COMMA',
["nonce",'EQUAL',
['SWS',34,"btbvbsbzbBbAbwbybvbxbCbtbzbubqbubsbqbtbsbqbtbxbCbxbsbybs",
34]]],
['COMMA',["stale",'EQUAL',"FALSE"]],
['COMMA',["algorithm",'EQUAL',"MD5"]]]]],
{'Content-Length',0}],
"\r\n",
["\n"]]
Maybe https://github.com/etrepum/kvc
I noticed your clarifying comment. I'd prefer to add a comment myself, but don't have enough karma. Anyway, the trick I use for that is to experiment in the shell. I'll iterate a pattern against a sample data structure until I've found the simplest form. You can use the _ match-all variable. I use an erlang shell inside an emacs shell window.
First, bind a sample to a variable:
A = [{a,b},[{c,d}, {e,f}]].
Now set the original structure against the variable:
[{a,b},[{c,d},{e,f}]] = A.
If you hit enter, you'll see they match. Hit alt-p (forget what emacs calls alt, but it's alt on my keyboard) to bring back the previous line. Replace some tuple or list item with an underscore:
[_,[{c,d},{e,f}]].
Hit enter to make sure you did it right and they still match. This example is trivial, but for deeply nested, multiline structures it's trickier, so it's handy to be able to just quickly match to test. Sometimes you'll want to try to guess at whole huge swaths, like using an underscore to match a tuple list inside a tuple that's the third element of a list. If you place it right, you can match the whole thing at once, but it's easy to misread it.
Anyway, repeat to explore the essential shape of the structure and place real variables where you want to pull out values:
[_, [_, _]] = A.
[_, _] = A.
[_, MyTupleList] = A. %% let's grab this tuple list
[{MyAtom,b}, [{c,d}, MyTuple]] = A. %% or maybe we want this atom and tuple
That's how I efficiently dissect and pattern match complex data structures.
However, I don't know what you're doing. I'd be inclined to have a wrapper function that uses KVC to pull out exactly what you need and then distributes to helper functions from there for each type of structure.
If I understand you correctly you want to pattern match some large datastructures of unknown formatting.
Example:
Input: {a, b} {a,b,c,d} {a,[],{},{b,c}}
function({A, B}) -> do_something;
function({A, B, C, D}) when is_atom(B) -> do_something_else;
function({A, B, C, D}) when is_list(B) -> more_doing.
The generic answer is of course that it is undecidable from just data to know how to categorize that data.
First you should probably be aware of iolists. They are created by functions such as io_lib:format/2 and in many other places in the code.
One example is that
[["SIP",47,"2",46,"0"],32,"407",32,"Proxy Authentication Required","\r\n"]
will print as
SIP/2.0 407 Proxy Authentication Required
So, I'd start with flattening all those lists, using a function such as
flatten_io(List) when is_list(List) ->
Flat = lists:map(fun flatten_io/1, List),
maybe_flatten(Flat);
flatten_io(Tuple) when is_tuple(Tuple) ->
list_to_tuple([flatten_io(Element) || Element <- tuple_to_list(Tuple)];
flatten_io(Other) -> Other.
maybe_flatten(L) when is_list(L) ->
case lists:all(fun(Ch) when Ch > 0 andalso Ch < 256 -> true;
(List) when is_list(List) ->
lists:all(fun(X) -> X > 0 andalso X < 256 end, List);
(_) -> false
end, L) of
true -> lists:flatten(L);
false -> L
end.
(Caveat: completely untested and quite inefficient. Will also crash for inproper lists, but you shouldn't have those in your data structures anyway.)
On second thought, I can't help you. Any data structure that uses the atom 'COMMA' for a comma in a string should be taken out and shot.
You should be able to flatten those things as well and start to get a view of what you are looking at.
I know that this is not a complete answer. Hope it helps.
Its hard to recommend something for handling this.
Transforming all the structures in a more sane and also more minimal format looks like its worth it. This depends mainly on the similarities in these structures.
Rather than having a special function for each of the 100 there must be some automatic reformatting that can be done, maybe even put the parts in records.
Once you have records its much easier to write functions for it since you don't need to know the actual number of elements in the record. More important: your code won't break when the number of elements changes.
To summarize: make a barrier between your code and the insanity of these structures by somehow sanitizing them by the most generic code possible. It will be probably a mix of generic reformatting with structure speicific stuff.
As an example already visible in this struct: the 'name-addr' tuples look like they have a uniform structure. So you can recurse over your structures (over all elements of tuples and lists) and match for "things" that have a common structure like 'name-addr' and replace these with nice records.
In order to help you eyeballing you can write yourself helper functions along this example:
eyeball(List) when is_list(List) ->
io:format("List with length ~b\n", [length(List)]);
eyeball(Tuple) when is_tuple(Tuple) ->
io:format("Tuple with ~b elements\n", [tuple_size(Tuple)]).
So you would get output like this:
2> eyeball({a,b,c}).
Tuple with 3 elements
ok
3> eyeball([a,b,c]).
List with length 3
ok
expansion of this in a useful tool for your use is left as an exercise. You could handle multiple levels by recursing over the elements and indenting the output.
Use pattern matching and functions that work on lists to extract only what you need.
Look at http://www.erlang.org/doc/man/lists.html:
keyfind, keyreplace, L = [H|T], ...

F# iteration over a Dictionary

I'm just starting with F# and I want to iterate over a dictionary, getting the keys and values.
So in C#, I'd put:
IDictionary resultSet = test.GetResults;
foreach (DictionaryEntry de in resultSet)
{
Console.WriteLine("Key = {0}, Value = {1}", de.Key, de.Value);
}
I can't seem to find a way to do this in F# (not one that compiles anyway).
Could anybody please suggest the equivalent code in F#?
Cheers,
Crush
What is the type of your dictionary?
If it is non-generic IDictionary as your code snippet suggests, then try the following (In F#, for doesn't implicitly insert conversions, so you need to add Seq.cast<> to get a typed collection that you can easily work with):
for entry in dict |> Seq.cast<DictionaryEntry> do
// use 'entry.Value' and 'entry.Key' here
If you are using generic IDictionary<'K, 'V> then you don't need the call to Seq.cast (if you have any control over the library, this is better than the previous option):
for entry in dict do
// use 'entry.Value' and 'entry.Key' here
If you're using immutable F# Map<'K, 'V> type (which is the best type to use if you're writing functional code in F#) then you can use the solution by Pavel or you can use for loop together with the KeyValue active pattern like this:
for KeyValue(k, v) in dict do
// 'k' is the key, 'v' is the value
In both of the cases, you can use either for or various iter functions. If you need to perform something with side-effects then I would prefer for loop (and this is not the first answer where I am mentioning this :-)), because this is a language construct designed for this purpose. For functional processing you can use various functions like Seq.filter etc..
resultSet |> Map.iter (fun key value ->
printf "Key = %A, Value = %A\n" key value)
(This is a shorter answer than Tomas' one, going to the point.) Dictionaries are mutable, in F# it's more natural to use Maps (immutable). So if you're dealing with map: Map<K,V>, iterate through it this way:
for KeyValue(key,value) in map do
DoStuff key value

Is there a difference between foreach and map?

Ok this is more of a computer science question, than a question based on a particular language, but is there a difference between a map operation and a foreach operation? Or are they simply different names for the same thing?
Different.
foreach iterates over a list and performs some operation with side effects to each list member (such as saving each one to the database for example)
map iterates over a list, transforms each member of that list, and returns another list of the same size with the transformed members (such as converting a list of strings to uppercase)
The important difference between them is that map accumulates all of the results into a collection, whereas foreach returns nothing. map is usually used when you want to transform a collection of elements with a function, whereas foreach simply executes an action for each element.
In short, foreach is for applying an operation on each element of a collection of elements, whereas map is for transforming one collection into another.
There are two significant differences between foreach and map.
foreach has no conceptual restrictions on the operation it applies, other than perhaps accept an element as argument. That is, the operation may do nothing, may have a side-effect, may return a value or may not return a value. All foreach cares about is to iterate over a collection of elements, and apply the operation on each element.
map, on the other hand, does have a restriction on the operation: it expects the operation to return an element, and probably also accept an element as argument. The map operation iterates over a collection of elements, applying the operation on each element, and finally storing the result of each invocation of the operation into another collection. In other words, the map transforms one collection into another.
foreach works with a single collection of elements. This is the input collection.
map works with two collections of elements: the input collection and the output collection.
It is not a mistake to relate the two algorithms: in fact, you may view the two hierarchically, where map is a specialization of foreach. That is, you could use foreach and have the operation transform its argument and insert it into another collection. So, the foreach algorithm is an abstraction, a generalization, of the map algorithm. In fact, because foreach has no restriction on its operation we can safely say that foreach is the simplest looping mechanism out there, and it can do anything a loop can do. map, as well as other more specialized algorithms, is there for expressiveness: if you wish to map (or transform) one collection into another, your intention is clearer if you use map than if you use foreach.
We can extend this discussion further, and consider the copy algorithm: a loop which clones a collection. This algorithm too is a specialization of the foreach algorithm. You could define an operation that, given an element, will insert that same element into another collection. If you use foreach with that operation you in effect performed the copy algorithm, albeit with reduced clarity, expressiveness or explicitness. Let's take it even further: We can say that map is a specialization of copy, itself a specialization of foreach. map may change any of the elements it iterates over. If map doesn't change any of the elements then it merely copied the elements, and using copy would express the intent more clearly.
The foreach algorithm itself may or may not have a return value, depending on the language. In C++, for example, foreach returns the operation it originally received. The idea is that the operation might have a state, and you may want that operation back to inspect how it evolved over the elements. map, too, may or may not return a value. In C++ transform (the equivalent for map here) happens to return an iterator to the end of the output container (collection). In Ruby, the return value of map is the output sequence (collection). So, the return value of the algorithms is really an implementation detail; their effect may or may not be what they return.
Array.protototype.map method & Array.protototype.forEach are both quite similar.
Run the following code: http://labs.codecademy.com/bw1/6#:workspace
var arr = [1, 2, 3, 4, 5];
arr.map(function(val, ind, arr){
console.log("arr[" + ind + "]: " + Math.pow(val,2));
});
console.log();
arr.forEach(function(val, ind, arr){
console.log("arr[" + ind + "]: " + Math.pow(val,2));
});
They give the exact ditto result.
arr[0]: 1
arr[1]: 4
arr[2]: 9
arr[3]: 16
arr[4]: 25
arr[0]: 1
arr[1]: 4
arr[2]: 9
arr[3]: 16
arr[4]: 25
But the twist comes when you run the following code:-
Here I've simply assigned the result of the return value from the map and forEach methods.
var arr = [1, 2, 3, 4, 5];
var ar1 = arr.map(function(val, ind, arr){
console.log("arr[" + ind + "]: " + Math.pow(val,2));
return val;
});
console.log();
console.log(ar1);
console.log();
var ar2 = arr.forEach(function(val, ind, arr){
console.log("arr[" + ind + "]: " + Math.pow(val,2));
return val;
});
console.log();
console.log(ar2);
console.log();
Now the result is something tricky!
arr[0]: 1
arr[1]: 4
arr[2]: 9
arr[3]: 16
arr[4]: 25
[ 1, 2, 3, 4, 5 ]
arr[0]: 1
arr[1]: 4
arr[2]: 9
arr[3]: 16
arr[4]: 25
undefined
Conclusion
Array.prototype.map returns an array but Array.prototype.forEach doesn't. So you can manipulate the returned array inside the callback function passed to the map method and then return it.
Array.prototype.forEach only walks through the given array so you can do your stuff while walking the array.
the most 'visible' difference is that map accumulates the result in a new collection, while foreach is done only for the execution itself.
but there are a couple of extra assumptions: since the 'purpose' of map is the new list of values, it doesn't really matters the order of execution. in fact, some execution environments generate parallel code, or even introduce some memoizing to avoid calling for repeated values, or lazyness, to avoid calling some at all.
foreach, on the other hand, is called specifically for the side effects; therefore the order is important, and usually can't be parallelised.
Short answer: map and forEach are different. Also, informally speaking, map is a strict superset of forEach.
Long answer: First, let's come up with one line descriptions of forEach and map:
forEach iterates over all elements, calling the supplied function on each.
map iterates over all elements, calling the supplied function on each, and produces a transformed array by remembering the result of each function call.
In many languages, forEach is often called just each. The following discussion uses JavaScript only for reference. It could really be any other language.
Now, let's use each of these functions.
Using forEach:
Task 1: Write a function printSquares, which accepts an array of numbers arr, and prints the square of each element in it.
Solution 1:
var printSquares = function (arr) {
arr.forEach(function (n) {
console.log(n * n);
});
};
Using map:
Task 2: Write a function selfDot, which accepts an array of numbers arr, and returns an array wherein each element is the square of the corresponding element in arr.
Aside: Here, in slang terms, we are trying to square the input array. Formally put, we are trying to compute it's dot product with itself.
Solution 2:
var selfDot = function (arr) {
return arr.map(function (n) {
return n * n;
});
};
How is map a superset of forEach?
You can use map to solve both tasks, Task 1 and Task 2. However, you cannot use forEach to solve the Task 2.
In Solution 1, if you simply replace forEach by map, the solution will still be valid. In Solution 2 however, replacing map by forEach will break your previously working solution.
Implementing forEach in terms of map:
Another way of realizing map's superiority is to implement forEach in terms of map. As we are good programmers, we'll won't indulge in namespace pollution. We'll call our forEach, just each.
Array.prototype.each = function (func) {
this.map(func);
};
Now, if you don't like the prototype nonsense, here you go:
var each = function (arr, func) {
arr.map(func); // Or map(arr, func);
};
So, umm.. Why's does forEach even exist?
The answer is efficiency. If you are not interested in transforming an array into another array, why should you compute the transformed array? Only to dump it? Of course not! If you don't want a transformation, you shouldn't do a transformation.
So while map can be used to solve Task 1, it probably shouldn't. For each is the right candidate for that.
Original answer:
While I largely agree with #madlep 's answer, I'd like to point out that map() is a strict super-set of forEach().
Yes, map() is usually used to create a new array. However, it may also be used to change the current array.
Here's an example:
var a = [0, 1, 2, 3, 4], b = null;
b = a.map(function (x) { a[x] = 'What!!'; return x*x; });
console.log(b); // logs [0, 1, 4, 9, 16]
console.log(a); // logs ["What!!", "What!!", "What!!", "What!!", "What!!"]
In the above example, a was conveniently set such that a[i] === i for i < a.length. Even so, it demonstrates the power of map().
Here's the official description of map(). Note that map() may even change the array on which it is called! Hail map().
Hope this helped.
Edited 10-Nov-2015: Added elaboration.
Here is an example in Scala using lists: map returns list, foreach returns nothing.
def map(f: Int ⇒ Int): List[Int]
def foreach(f: Int ⇒ Unit): Unit
So map returns the list resulting from applying the function f to each list element:
scala> val list = List(1, 2, 3)
list: List[Int] = List(1, 2, 3)
scala> list map (x => x * 2)
res0: List[Int] = List(2, 4, 6)
Foreach just applies f to each element:
scala> var sum = 0
sum: Int = 0
scala> list foreach (sum += _)
scala> sum
res2: Int = 6 // res1 is empty
If you're talking about Javascript in particular, the difference is that map is a loop function while forEach is an iterator.
Use map when you want to apply an operation to each member of the list and get the results back as a new list, without affecting the original list.
Use forEach when you want to do something on the basis of each element of the list. You might be adding things to the page, for example. Essentially, it's great for when you want "side effects".
Other differences: forEach returns nothing (since it is really a control flow function), and the passed-in function gets references to the index and the whole list, whereas map returns the new list and only passes in the current element.
ForEach tries to apply a function such as writing to db etc on each element of the RDD without returning anything back.
But the map() applies some function over the elements of rdd and returns the rdd. So when you run the below method it won't fail at line3 but while collecting the rdd after applying foreach it will fail and throw an error which says
File "<stdin>", line 5, in <module>
AttributeError: 'NoneType' object has no attribute 'collect'
nums = sc.parallelize([1,2,3,4,5,6,7,8,9,10])
num2 = nums.map(lambda x: x+2)
print ("num2",num2.collect())
num3 = nums.foreach(lambda x : x*x)
print ("num3",num3.collect())

Resources