How do I update docker images? - docker

I read that docker works with layers, so when creating a container with a Dockerfile, you start with the base image, then subsequent commands run add a layer to the container, so if you save the state of that new container, you have a new image. There are a couple of things I'm wondering about this.
If I start from a Ubuntu image, which is pretty big and bulky since its a complete OS, then I add a few tools to it and save this as a new image which I upload to the hub. If someone downloads my image, and they already have a Ubuntu image saved in their images folder, does this mean they can skip downloading Ubuntu since they already have the image? If so, how does this work when I modify parts of the original image, does Docker use its cached data to selectively apply those changes to the Ubuntu image after it loads it?
2.) How do I update an image that I built by modifying the Dockerfile? I setup a simple django project with this Dockerfile:
FROM python:3.5
ENV PYTHONBUFFERED 1
ENV APPLICATION_ROOT /app
ENV APP_ENVIRONMENT L
RUN mkdir -p $APPLICATION_ROOT
WORKDIR $APPLICATION_ROOT
ADD requirements.txt $APPLICATION_ROOT
RUN pip install --upgrade pip
RUN pip install -r requirements.txt
ADD . $APPLICATION_ROOT
and used this to create the image in the beginning. So everytime I create a box, it loads all these environment variables, if I rebuild the box completely it reinstalls the packages and all the extras. I need to add a new environment variable, so I added it to the bottom of the Dockerfile, along with a test variable:
ENV COMPOSE_CONVERT_WINDOWS_PATHS 1
ENV TEST_ENV_VAR TEST
When I delete the container and the image, and build a new container, it all seems to go accordingly, it tells me that it creates the new Step 4 : ENV
COMPOSE_CONVERT_WINDOWS_PATHS 1
---> Running in 75551ea311b2
---> b25b60e29f18
Removing intermediate container 75551ea311b2
So its like something gets lost in some of these intermediate container transitions. Is this how the caching system works, every new layer is an intermediate container? So with that in mind, how do you add a new layer, do you always have to add the new data at the bottom of the Dockerfile? Or would it be better to leave the Dockerfile alone once the image is built, and just modify the container and built a new image?
EDIT I just tried installing an image, a package called bwawrik/bioinformatics, which is a CentOS based container which has a wide range of tools installed.
It froze half way through, so I exited it and then ran it again to see if everything was installed:
$ docker pull bwawrik/bioinformatics
Using default tag: latest
latest: Pulling from bwawrik/bioinformatics
a3ed95caeb02: Already exists
a3ed95caeb02: Already exists
7e78dbe53fdd: Already exists
ebcc98113eaa: Already exists
598d3c8fd678: Already exists
12520d1e1960: Already exists
9b4912d2bc7b: Already exists
c64f941884ae: Already exists
24371a4298bf: Already exists
993de48846f3: Already exists
2231b3c00b9e: Already exists
2d67c793630d: Already exists
d43673e70e8e: Already exists
fe4f50dda611: Already exists
33300f752b24: Already exists
b4eec31201d8: Already exists
f34092f697e8: Already exists
e49521d8fb4f: Already exists
8349c93680fe: Already exists
929d44a7a5a1: Already exists
09a30957f0fb: Already exists
4611e742e0b5: Already exists
25aacf0148db: Already exists
74da82504b6c: Already exists
3e0aac083b86: Already exists
f52c7e0ac000: Already exists
35eee92aaf2f: Already exists
5f6d8eb70885: Already exists
536920bfe266: Already exists
98638e678c51: Already exists
9123956b991d: Already exists
1c4c8a29cd65: Already exists
1804bf352a97: Already exists
aa6fe9359956: Already exists
e7e38d1250a9: Already exists
05e935c831dc: Already exists
b7dfc22c26f3: Already exists
1514d4797ffd: Already exists
Digest: sha256:0391808e21b7b5cc0eb44fc2dad0d7f5415115bdaafb4534c0b6a12efd47a88b
Status: Image is up to date for bwawrik/bioinformatics:latest
So it definitely installed the package in pieces, not all in one go. Are these pieces, different images?

image vs. container
First, let me clarify some terminology.
image: A static, immutable object. This is the thing you build when you run docker build using a Dockerfile. An image is not a thing that runs.
Images are composed of layers. an image might have only one layer, or it might have many layers.
container: A running thing. It uses an image as its starting template.
This is similar to a binary program and a process. You have a binary program on disk (such as /bin/sh), and when you run it, it is a process on your system. This is similar to the relationship between images and containers.
Adding layers to a base image
You can build your own image from a base image (such as ubuntu in your example). Some commands in your Dockerfile will create a new layer in the ultimate image. Some of those are RUN, COPY, and ADD.
The very first layer has no parent layer. But every other layer will have a parent layer. In this way they link to one another, stacking up like pancakes.
Each layer has a unique ID (the long hexadecimal hashes you have already seen). They can also have human-friendly names, known as tags (e.g. ubuntu:16.04).
What is a layer vs. an image?
Technically, each layer is also an image. If you build a new image and it has 5 layers, you can use that image and it will contain all 5 layers. If you run a container using the third layer in the stack as your image ID, you can do that too - but it would only contain 3 layers. The one you specify and the two that are its ancestors.
But as a matter of convention, the term "image" generally means the layer that has a tag associated. When you run docker images, it will show you all of the top-level images, and hide the layers beneath (but you can show them all with -a).
What is an intermediate container?
When docker build runs, it does all of its work inside of containers (naturally!) So if it encounters a RUN step, it will create a container from the current top layer, run the specified commands in there, and then save the result as a new layer. Then it will create a container from this new layer, run the next thing... etc.
The intermediate containers are only used for the build process, and are discarded after the build.
How layer filesystems work
You asked whether someone downloading your ubuntu-based image are only doing a partial download, if they already had the ubuntu image locally.
Yes! That's exactly right.
Every layer uses the layer beneath it as a base. The new layer is basically a diff between that layer and a new state. It's not a diff in the same way as a git commit might work, though. It works at the file level, not at a the line level.
Say you started from ubuntu, and you ran this Dockerfile.
FROM: ubuntu:16.04
RUN groupadd dan && useradd -g dan dan
This would result in a two layer image. The first layer would be the ubuntu image. The second would probably have only a handful of changes.
A newer copy of /etc/passwd with user "dan"
A newer copy of /etc/group with group "dan"
A new directory /home/dan
A couple of default files like /home/dan/.bashrc
And that's it. If you start a container from this image, those few files would be in the topmost layer, and everything else would come from the filesystem in the ubuntu image.
The top-most read-write layer in a container
One other point. When you run a container, you can write files in the filesystem. But if you stop the container and run another container from the same image, everything is reset. So where are the files written?
Images are immutable, so once they are created, they can't be changed. You can build a new version, but that's a new image. It would have a different ID and would not be the same image.
A container has a top-level read-write layer which is put on top of the image layers. Any writes happen in that layer. It works just like the other layers. If you need to modify a file (or add one, or delete one), that is done in the top layer, and doesn't affect the lower layers. If the file exists already, it is copied into the read-write layer, and then modified. This is known as copy-on-write (CoW).
Where to add changes
Do you have to add new things to the bottom of Dockerfile? No, you can add anything anywhere (or change anything).
However, how you do things does affect your build times because of how the build caching works.
Docker will try to cache results during builds. If it finds as it reads through Dockerfile that the FROM is the same, the first RUN is the same, the second RUN is the same... it will assume it has already done those steps, and will use cached results. If it encounters something that is different from the last build, it will invalidate the cache. Everything from that point on will be re-run fresh.
Some things will always invalidate the cache. For instance if you use ADD or COPY, those always invalidate the cache. That's because Docker only keeps track of what the build commands are. It doesn't try to figure out "is this version of the file I'm copying the same one as last time?"
So it is a common practice to start with FROM, then put very static things like RUN commands that install packages with e.g. apt-get, etc. Those things tend to not change a lot after your Dockerfile has been initially written. Later in the file is a more convenient place to put things that change more often.
It's hard to concisely give good advice on this, because it really depends on the project in question. But it pays to learn how the build caching works and try to take advantage of it.

Related

How does docker create a cached layer for RUN command?

I'm new to docker, II read from a book which says:
Dockerfile instruction results in an image layer, but if the
instruction doesn’t change between builds, and the content going into
the instruction is the same, Docker knows it can use the previous
layer in the cache. An example forCOPY instuction, Docker
calculates whether the input has a match in the cache by generating a
hash, which is like a digital fingerprint representing the input. The
hash is made from the Dockerfile instruction and the contents of any
files being copied. If there’s no match for the hash in the existing
image layers, Docker executes the instruction, and that breaks the
cache. As soon as the cache is broken, Docker executes all the
instructions that follow, even if they haven’t changed.
I can understand it, but is every instruction eligible for docker to create a cache layer?
Let's take RUN instruction for example
RUN dotnet build "WebApplication.csproj" -c Release -o /app/build
WebApplication.csproj is most likely the same (we are not adding any third party package, only modify source code). since the content of "WebApplication.csproj" is the same, should Docker use the cache layer generated before? if docker does use cache layer, which can cause problem because we modified the source code, I don't think Docker is smart enough to check every source files in our project?

How do I remove a directory inside container with JIB?

If it is a docker file, I want to remove the directory by executing the following command.
RUN rm /usr/bin/wget
How can I do it? any help is appreciated
First thing to emphasize: in Dockerfile, RUN rm /usr/bin/wget doesn't physically remove the file. Files and directories in previous layers will physically stay there forever. So, if you are trying to remove a file with sensitive information using rm, it's not going to work. As an example, recently, this oversight has led to a high-profile security breach in Codecov.
Docker Layer Attacks: Publicly distributed Docker images should be either squashed or multistage such that intermediate layers that contain sensitive information are excluded from the final build.
What happens is, RUN rm /usr/bin/wget creates another layer that contains a "whiteout" file /usr/bin/.wh.wget, and this new layer sits on top of all previous layers. Then at runtime, it's just that container runtimes will hide the file and you will not see it. However, if you download the image and inspect each layer, you will be able to see and extract both /usr/bin/wget and /usr/bin/.wh.wget files. So, yes, doing rm later doesn't reduce the size of the image at all. (BTW, each RUN in Dockerfile creates a new layer at the end. So, for example, if you remove files within the same RUN like RUN touch /foo && rm /foo, you will not leave /foo in the final image.)
Therefore, with Jib, if the file or directory you want to "delete" is coming from a base image, what you can do is to create a new whiteout file for it. Jib has the <extraDirectories> feature to copy arbitrary files into an image. So, for example, since <project root>/src/main/jib is the default extra directory, you can create an empty src/main/jib/usr/bin/.wh.wget, which will be coped into /usr/bin/.wh.wget in an image.
And of course, if you really want to physically remove the file that comes from the base image, the only option is to rebuild your base image so that it doesn't contain /usr/bin/wget.
For completeness: if the file or directory you want to remove is not from your base image but from Jib, you can use the Jib Layer-Filter extension (Maven/Gradle). (This is app-layer filtering and doesn't involve whiteout files.) However, normally there will be no reason to remove files put by Jib.

Is there a way to force a particular line in my Dockerfile to always rebuild, whilst still benefiting from caching on the preceding layers? [duplicate]

This question already has answers here:
Disable cache for specific RUN commands
(9 answers)
Closed 1 year ago.
I frequently seem to have to write Dockerfiles like this (line numbers added for clarity):
1. FROM somebase
2. RUN cp /some/local/stuff /some/docker/container/path
3. RUN some-other-local-commands
4. RUN wget http://some.remote.server/some.remote.path.for.example.json
5. RUN some-other-local-commands-which-may-depend-on-the-json
On line (4), I'm fetching a remote resource. Let's assume for now that's a JSON file. It might change from time-to-time, maybe not on every build, but perhaps every few hours or days.
What this means is that every time I build my container, I want to ensure the freshest JSON file is fetched. One way to force this is to add the --no-cache parameter to my docker build command, but this forces all of the lines/layers to rebuild, including (1)-(3), where that is likely not necessary. Is there a pattern or technique to automatically 'taint' or 'mark' line (4) so that Docker knows it always has to re-run the wget (presumably this would also have to force a rebuild of line 5), whilst still getting the layer caching behaviour for lines (1)-(3) when Docker detects the pre-req files haven't changed?
If the specific thing you're trying to trigger rebuilds is the result of RUN wget ... a specific URL, Docker does actually have native support for this.
There are two similar commands to copy files into a container. COPY only copies files from the build context. ADD can also fetch external URLs and unpack local archives (but not both at the same time). The general recommendation is to use COPY, unless you need one of the specific things ADD does differently.
So you should be able to say
ADD http://some.remote.server/some.remote.path.for.example.json .
RUN some-other-local-commands-which-may-depend-on-the-json
and the RUN command will use the Docker layer cache based on the contents of the fetched file.
If this approach doesn't work for you (maybe you need special authentication to fetch the file) you can also fetch the file outside of Docker before you run docker build, and then COPY it in. Again, it will work like any other file you COPY in, and layer caching will take effect based on whether the file has changed or not.

What does "From image" do in dockerfiles

I see that dockerfiles usually have a line beginning with "from" keywork, for example:
FROM composer/composer:1.1-alpine AS composer
As far as I know, dockerfiles are a set of commands that help to build and run many containers in docker.
As the example above, docker uses a image named composer/composer:1.1-alpine from docker hub. The As composer just make an alias, so we can use it more convenient.
When I looked for the image, I found the link enter link description here and then enter link description here.
The thing I dont really understand is that:
I guess docker will use the image to build something, but how exactly does it use the image? Does docker run the image or just prepare to use it when in need. Sometimes I dont see the dockerfiles use the image in following line (like this example, there are no lines using the keyword "composer" except the first line). It makes me confused.
Any help would be appreciated.
Thanks.
DockerFiles describes layers: Each command creates it's own layer. For example:
RUN touch test.txt
RUN cp test.txt foo.txt
would create two layers - the first one with the file test.txt, the second one without test.txt but with foo.txt
Each layer adds something to a container. When we walk the layers "up" we find that the very first layer is the empty layer, e.g. it contains only the linux (or windows) kernel itself - nothing else. But that's not really useful - we need a lot of tools (e.g. bash) to be able to run an app. So common base images like alpine add suc tools and core os functions.
It would be annoying as hell if we had to do this setup in every container so there a lots of base images, which do exactly this kind of setup.
If you want to see what a base image does, just search the name on hub.docker.com - there you will find the Dockerfile, describing the build process.
Aditionally, containers can be extenend, e.g. you use the elasticsearch container as a base image, and add your own functionality - that's the second use case for base images.
For your second question: You have to decide if you have to replicate the steps in your base image or not. If you inherit from a general OS image like apline - probably not, since linux normally ships with these tools. If you inherit from a more specialized container, it depends - if your machine matches the environment in the container, you don't need to, but if not you will have to apply these steps to your machine, too. E.g. if you don't have elasticsearch installed, you have to install it.
As for multiple froms in one Dockerfile: Please look up the documentation for Multi Stage builds. Essentially, they encapsulate multiple containers in a single dockerfile. Which can be very useful if you need a different set to build an app and to run the app. The first Container is responsible to build your app, while the second one takes the compiled source code and just runs it.
Watch for COPY --from= lines, these are copying files from one container to another.
The FROM instruction initializes a new build stage and sets the Base Image for subsequent instructions. As such, a valid Dockerfile must start with a FROM instruction. The image can be any valid image – it is especially easy to start by pulling an image from the Public Repositories.
FROM can appear multiple times within a single Dockerfile to create multiple images or use one build stage as a dependency for another. Simply make a note of the last image ID output by the commit before each new FROM instruction. Each FROM instruction clears any state created by previous instructions.
Optionally a name can be given to a new build stage by adding AS name to the FROM instruction. The name can be used in subsequent FROM and COPY --from= instructions to refer to the image built in this stage.
The tag or digest values are optional. If you omit either of them, the builder assumes a latest tag by default. The builder returns an error if it cannot find the tag value.
Taken from : https://docs.docker.com/engine/reference/builder/#from

Why isn't Docker more transparent about what it's downloading?

When I download a Docker image, it downloads dependencies, but only displays their hashes. Why does it not display what it is downloading?
For example:
➜ ~ docker run ubuntu:16.04
Unable to find image 'ubuntu:16.04' locally
16.04: Pulling from library/ubuntu
b3e1c725a85f: Downloading 40.63 MB/50.22 MB
4daad8bdde31: Download complete
63fe8c0068a8: Download complete
4a70713c436f: Download complete
bd842a2105a8: Download complete
What's the point in only telling me that it's downloading b3e1c725a85f, etc.?
An image is created on layers of filesystems represented by hashes. After it's creation, the base image tag may point to a completely different set of hashes without affecting any images built off of it. And these layers are based on things like run commands, the tag to call it something like ubuntu:16.04 is only added after the image is made.
So the best that could be done is to say 4a70713c436f is based on adding some directory based on a hash of an input folder itself, or a multi-line run command, neither of which makes for a decent UI. The result may have no tagged name, or it could have multiple tagged names. So the simplest solution is to output what's universal and unchanging for all scenarios, an unchanging hash.
To rephrase that pictorially:
b3e1c725a85f: could be ubuntu:16.04, ubuntu:16, ubuntu:latest, some.other.registry:5000/ubuntu-mirror:16.04
4daad8bdde31: could be completely untagged, just a run command
63fe8c0068a8: could be completely untagged, just a copy file
4a70713c436f: could point to a tagged base image where that tag has since changed
bd842a2105a8: could be created with a docker commit command (eek)

Resources