What does it means "specimen centered result reporting" and "order centered result reporting" on IHE technical framework? - hl7

IHE Technical framework for Pathology and Laboratory uses "specimen centered result reporting" and "order centered result reporting" a lot pointing what is OUL^R22 & ORU^R01 from HL7 meant for. I don't understand what does it actually means, what is different one from other and how is it useful each one.

HL7
Specimen Oriented [OUL^R22]
This message was designed to accommodate specimen oriented testing. It should be applicable to container-less testing (e.g., elephant on a table) and laboratory automation systems requiring container.
Generally this construct allows transfer of multiple results related to a specimen from a patient, where this specimen has been in none, one, or multiple containers.
In addition to the patient results themselves it permits the communication of the following kinds of information:
Analysis results of a non patient related sample (e.g., environmental) - patient related segments (e.g., PID, PD1, PV1, PV2) are optional.
Analysis results to a particular container with QC sample and the lot and manufacturer information about this sample (SAC-INV segments) - however for this purpose the “Unsolicited Specimen Container Oriented Observation Message” (OUL^R23) is recommended due to explicit relation between the observation and the container.
Basic identification data (lot, manufacturer, etc.) of the reagents and other substances involved in the generation of analysis results (TCD-SID segments).
Order Oriented [OUL^R24]
This message was designed to accommodate multi-specimen oriented testing. It should be applicable to, e.g., laboratory automation systems requiring containers.
Generally this construct allows transfer of multiple results, each one related to none, one or more specific containers with one or more specimens for a patient. (Example: Creatinine Clearance results with detailed information about the urine and serum specimens and their containers.)
In addition to patient results themselves it permits the communication of the following kind of information:
Analysis results of a non patient related sample (e.g. environmental) - patient related segments (e.g. PID, PD1, PV1, PV2) are optionals.
Analysis results to a particular container with QC, sample and the lot and manufacturer information about this sample (SAC-INV segments).
Basic identification data (lot, manufacturer, etc) of the reagents and other substances involved in the generation of analysis results (TCD-SID segments)
References
HL7 Messaging v2.5.1: Chapter 7 /21
Clinical Laboratory Automation: HL7 v2.5.1: Chapter 13

Related

What is the difference between data association and feature matching in SLAM/VO?

I have read a little bit about it and saw for Instance the terms used interchangably or that feature matching is part of data association. In "An Overview to Visual Odometry and Visual SLAM: Applications to Mobile Robotics" by Yousif et. al. it is said, that "…feature matching is the process of individually extracting features and matching them over multiple frames" but also that "DA is defined as the process of associating a measurement (or feature) to its corresponding previously extracted feature.", but separetes them from each other. Other things i read about weren't that clear but mostly seem to indicate that feature matching is part of DA. Im a little bit confused.
Data Association methods are the ones where we choose how do we find the transformations between two images. There are as follows:
Features points
Image patches around the features -semi dense methods/ semi direct
pixel to pixel - direct/optical flow based methods

Dynamic Process parameter adjustment in Semiconductor manufacturing data

I have process parameter data from semiconductor manufacturing.and requirement is to suggest what could be the best parameter adjustment to be made to process parameter to get better yield ie best path for high yield. what machine learning /Statistical models best suits this requirement
Note:I have thought of using decision tree which can give us best path for high yield.
Would like to know it any other methods that can be more efficient
data is like
lotno x1 x2 x3 x4 x5 yield(%)
<95% yield is considered as 0 and >95% as 1
I'm not really sure of the question here, but as a former semiconductor process engineer, here is how I look at the yield improvement approach - perspective.
Process Development.
DOE: Typically, I would run structured DOEs to understand my process (#4). I would first identify "potential" 'factors', and run various "screening" experiments to identify statistical significance. With the goal basically here to identify the most statistically significant (and for that matter, least significant) factors. So these are inherently simple experiments, low # of "levels" which don't target understanding of the curvature of the response surface, they just look for magnitude change of response vs factor. Generally, I am most concerned with 'Process' factors, but it is important to recognize that the influence of variable inputs can come from more than just "machine knobs' as example. Variable can arise from 1) People, 2) Environment (moisture, temp, etc), 3) consumables (used in the process), 4) Equipment (is 40 psi on this tool really 40 psi and the same as 40 psi on a different tool) 4) Process variable settings.
With the most statistically significant factors, I would run more elaborate DOE using the major factors and analyze this data to develop a model. There are generally more 'levels' used here to allow for curvature insight of the response surface via the analysis. There are many types of well known standard experimental design structures here. And there is software such as JMP that is specifically set up to do this analysis.
From here, the idea would be to generate a model in the form of Response = F (Factors). That allows you to essentially optimize the response based upon these factors where the response is a reflection of your yield criteria.
From here, the engineer would typically execute confirmation runs with optimized factors to confirm optimized response.
Note that the software analysis typically allows for the engineer to illuminate any run order dependence. The execution of the DOE is typically performed in a randomized cell fashion. (Each 'cell' is a set of conditions for the experiment). Similarly the experiments include some level of repetition to gauge 'repeatability' of the 'system'. This inclusion can be explicit (run the same cell twice), but there is also some level of repeatability inherent in the design as well since you are running multiple cells, albeit at difference settings. But generally, the experiment includes explicitly repeated cells.
And finally there is the concept of manufacturability, which includes constraints of time, cost, physical limits, equipment capability, etc. (The ideal process works great, but it takes 10 years, costs 1 million dollars and requires projected settings outsides the capability of the tool.)
Since you have manufacturing data, hopefully, you have the data that captures the other types of factors as well (1,2,3), so you should specifically analyze the data to try to identify such effects. This is typically done as A vs B comparisons. Person A vs B, Tool A vs B, Consumable A vs B, Consumable lot A vs B, Summer vs Winter, etc.
Basically, there are all sorts of comparisons you could envision here and check for statistically differences across two sets of populations.
A comment on response: What is the yield criteria? You should know this in order to formulate the model. For semiconductors, we have both line yield (process yield) but there is also device yield. I assume for your work, you are primarily concerned with line yield. So minimizing variability in the factors (from 1,2,3,4) to achieve the desired response (target response(s) with minimal variability) is the primary goal.
APC (Advanced Process Control).
In many cases, there is significant trending that results from whatever reason; crappy tool control (the tool heats up), crappy consumable (the target material wears, the polishing pad wears, the chemical bath gets loaded, whatever), and so the idea here is how to adjust the next batch/lot/wafer based upon the history of what came prior. Either improve the manufacturing to avoid/minimize this trending (run order dependence) or adjust process to accommodate it to achieve the desired response.
Time for lunch, hope this helps...if you post on the specific process module type, and even equipment and consumables, I might be able to provide more insight.

Applying MACHINE learning in biological text data

I am trying to solve the following question - Given a text file containing a bunch of biological information, find out the one gene which is {up/down}regulated. Now, for this I have many such (60K) files and have annotated some (1000) of them as to which gene is {up/down}regulated.
Conditions -
Many sentences in the file have some gene name mention and some of them also have neighboring text that can help one decide if this is indeed the gene being modulated.
Some files also have NO gene modulated. But these still have gene mentions.
Given this, I wanted to ask (having absolutely no background in ML), what sequence learning algorithm/tool do I use that can take in my annotated (training) data (after probably converting the text to vectors somehow!) and can build a good model on which I can then test more files?
Example data -
Title: Assessment of Thermotolerance in preshocked hsp70(-/-) and
(+/+) cells
Organism: Mus musculus
Experiment type: Expression profiling by array
Summary: From preliminary experiments, HSP70 deficient MEF cells display moderate thermotolerance to a severe heatshock of 45.5 degrees after a mild preshock at 43 degrees, even in the absence of hsp70 protein. We would like to determine which genes in these cells are being activated to account for this thermotolerance. AQP has also been reported to be important.
Keywords: thermal stress, heat shock response, knockout, cell culture, hsp70
Overall design: Two cell lines are analyzed - hsp70 knockout and hsp70 rescue cells. 6 microarrays from the (-/-)knockout cells are analyzed (3 Pretreated vs 3 unheated controls). For the (+/+) rescue cells, 4 microarrays are used (2 pretreated and 2 unheated controls). Cells were plated at 3k/well in a 96 well plate, covered with a gas permeable sealer and heat shocked at 43degrees for 30 minutes at the 20 hr time point. The RNA was harvested at 3hrs after heat treatment
Here my main gene is hsp70 and it is down-regulated (deducible from hsp(-/-) or HSP70 deficient). Many other gene names are also there like AQP.
There could be another file with no gene modified at all. In fact, more files have no actual gene modulation than those who do, and all contain gene name mentions.
Any idea would be great!!
If you have no background in ML I suggest buying a product like this one, this one or this one. These products where in development for decades with team budgets in millions.
What you are trying to do is not that simple. For example a lot of papers contain negative statements by first citing the original statement from another paper and then negating it. In your example how are you going to handle this:
AQP has also been reported to be important by Doe et al. However, this study suggest that this might not be the case.
Also, if you are looking into large corpus of biomedical research papers, or for this matter any corpus of research papers. You will find tons of papers that suggest something for example gene being up-regulated or not, and then there is one paper published in Cell magazine that all previous research has been mistaken.
To make matters worse, gene/protein names are not that stable. Besides few famous ones like P53. There is a bunch of run of the mill ones that are initially thought that they are one gene, but later it turns out that these are two different things. When this happen there are two ways community handles it. Either both of the genes get new names (usually with some designator at the end) or if the split is uneven the larger class retains original name and the second one gets the new name. To compound this problem, after this split happens not all researchers get the memo at instantly, so there is still stream of publications using old publication.
These are just two simple problems, there are 100s of these.
If you are doing this for personal enrichment. Here are some suggestions:
Build a language model on biomedical papers. Existing language models are usually built from news-wire sources or from social media data. All three of the corpora claim to be written in English language. But in reality these are three different languages with their own grammar and vocabulary
Look into things like embeddings and word2vec.
Look into Kaggle competitions, this is somewhat popular topic there.
Subscribe to KDD and BIBM magazines or find them in nearby library. There are 100s of papers on this subject.

Finding features for classifying document into printable or non-printable

I would like to perform a binary classification of documents (.txt, .pdf, .jpeg, .img, etc.) into two categories: printable and non-printable. Essentially our school runs a free printing service for clubs, but the reality is that many clubs abuse the free printing and end up printing their homework, papers, etc., which amounts to thousands of dollars in ink and paper. Thus we would like to take some unsupervised methods to help limit this by determining whether a document is with high probability not club related (e.g. Biophysics paper, there is no biophysics club!).
So this is a very simple binary classification problem. I am not looking for low-level implementation details or which ML algorithms I should use, but rather how I should discover the relevant features that will then be fed to the training, etc.
My first idea was to gather all the documents that students print in the library. The idea is that if you have actual club printing, you'll do it for free at the club printing center rather than pay for it at the library. That would be a massive dataset, assuming every document printed at the library is assigned the non-printable/club material category. Unfortunately, the school is very liberal and opposed to allowing this due to privacy concerns, so it is not really an option without legal risks.
A similar-minded option would be to collect documents that are tied to courses / school work, e.g. course syllabi, available course documents online (homeworks, papers, etc.) and do feature extraction / selection on these. The assumption is that students would be abusing the printing to generally print material relevant to their studies.
While for .pdf and .txt based document this approach should have reasonable performance, I am at a loss at how to classify image based documents, besides perhaps using the title of the document and other meta data. A clever violator could simply convert all their text documents to image format to circumvent this system. However that is outside the scope of this question and should be saved for a future question / research. For now the scope is just text based documents.
Note that there are previous questions on topics similar to this, but mine is very specific and I believe it may pose challenges that something like movie review classification might not have to face.
I just wanted to leave a comment but it ended way longer than what I imagined.
While this is an interesting problem I'm not sure ML will get you what you need easily.
Firstly your classification problem is of the type A vs the World and A isn't strictly defined. Unless you know exactly what kind of stuff the clubs print you can't really say that new material belong or no to that class.
This will prove particularly difficult when you will need to assemble a large enough training set to be able to cover whatever can or cannot be printed. Such task will be extremely tedious, and as you said you won't have access to what the clubs usually print out so at best you will have a large class imbalance in your training set.
As the goal is to make the system automated (I mean if there is human interaction anyway, it's faster to check what will be printed than to make a ML algorithm that will provide a score that a human will have to investigate anyway) the number of false positives and false negatives will also be problematic. There will be cases where the clubs won't be able to print things they have the right to.
As you said you could simplify greatly the problem by classifying Course Material and Not Course Material. For that I will look towards BoW because some words are more present than others in papers or course material (everything remotely technical). The number of words as well as the overall size of the file seem like sensible things to extract. The structure is often also particular : it might be a good idea to extract such things : "number of lines with less than x words", "number of lines per page", "number of pictures" (if that's something you can extract from the file), ...
For pictures the major thing to check would be if this a scan of something (often they will scan and print course related things I guess), for that the format of the image is already a good indication but I don't see other things that would be particularly "course related".
So for me, if you can't really define precisely one of your two classes don't go with classification or reduce the problem to something you can really define (course related things).
If you are able to compile a "black list" of documents students are not allowed to print, you can then implement a several layers rejection mechanism.
I would suggest these 3 levels:
compare the md5 of the file they want to print with a database of all the md5 of the black-listed documents.
if the 1) is passed, compare repeat 1) but at a page level, rather than at document level (perhaps they want to print just few pages rather than the entire document).
if 2) is passed you can compare the page they want to print with the pages of the black-listed documents document using an image similarity method, like SSIM. if you get a high score between the page they want print and one of the black-listed items do not print, and update your md5 database accordingly.
if 3) is passed: print!
A few words about SSIM: this method is quite robust to noise, so even a smart student who added some sort of niose to the image will be caught
However:
you have to find a proper way to extract a region of interest (ROI) from the page and the db of documents (if the two ROIs are in two different area of the page, SSIM will be negative)
SSIM might be slow! definitely a C implementation is needed here.
I think SSIM is not rotational invariant, hence the check will fail if they print the page upside down (unless you have a smart way to rotate the page).

Rules engine for spatial and temporal reasoning?

I have an application that receives a number of datums that characterize 3 dimensional spatial and temporal processes. It then filters these datums and creates actions which are then sent to processes that perform the actions. Rinse and repeat.
At present, I have a collection of custom filters that perform a lot of complicated spatial/temporal calculations.
Many times as I discuss my system to individuals in my company, they ask if I'm using a rules engine.
I have yet to find a rules engine that is able to reason well temporally and spatially. (Things like: When are two 3D entities ever close? Is 3D entity A ever contained in 3D region B? If entity C is near entity D but oriented backwards relative to C then perform action D.)
I have looked at Drools, Cyc, Jess in the past (say 3-4 years ago). It's time to re-examine the state of the art. Any suggestions? Any standards that you know of that support this kind of reasoning? Any defacto standards? Any applications?
Thanks!
Premise - remember that a SQL-based1 DBMS is a (quite capable) inference engine, as can be seen from these comparisons between SQL and Prolog:
prolog to SQL converter
difference between SQL and Prolog
To address specifically your spatio-temporal applications, this book will help:
TEMPORAL DATA AND THE RELATIONAL MODEL - A Detailed Investigation into
the Application of Interval and Relation Theory to the Problem of Temporal Database Management.
That is, combining Interval and Relation Theory is possible to reasoning about spatio-temporal problems effectively (see 5.2 Applications of Intervals).
Of course, if your SQL-based DBMS is not (yet) equipped with interval (and other) operators you will need to extend it appropriately (via store-procedures and/or User-Defined Functions - UDFs).
Update: skimming the paper pointed out in comments by timemirror (Towards a 3D Spatial Query Language for Building Information Models) they do essentially what I touched on above:
(last page)
IMPLEMENTATION CONCEPTS
The implementation of the abstract
type system into a query language will
be performed on the basis of the query
language SQL, which is a widely
established standard in the field of
object-relational databases. The
international standard SQL:1999
extends the relational model to
include object-oriented aspects, such
as the possibility to define complex
abstract data types with integrated
methods.
I do not concur with the "object-relational database" terminology (for reason off-topic here) but I think the rest is pertinent.
Update: a quote regardind 3D and interval theory from the book cited above:
NOTE: All of the intervals discussed
so far can be thought of as
one-dimensional. However, we might
want to combine two one-dimensional
intervals to form a twodimensional
interval. For example, a rectangular
plot of ground might be thought of as
a two-dimensional interval, because it
is, by definition, an object with
length and width, each of which is
basically a one-dimensional interval
measured along some axis. And, of
course, we can extend this idea to any
number of dimensions. For example, a
(rather simple!) building might be
regarded as a three-dimensional
interval: It is an object with length,
width, and height, or in other words a
cuboid. (More realistically, a
building might be regarded as a set of
several such cuboids that overlap in
various ways.) And so on. In what
follows, however, we will restrict our
attention to one-dimensional intervals
specifically, barring explicit
statements to the contrary, and we
will omit the "one-dimensional"
qualifier for simplicity.
Note
I wrote SQL-based and not relational because there are ways to use such DBMSes that completely deviate from relational theory.
This is Spatial Reasoning... a few models but 9DE-IM is now accepted by OGC and implemented in PostGIS and other programming tools.
PostGIS implements a spatial reasoning engine based on dimensionally extended 9 intersection model... 9DE-IM..
http://postgis.refractions.net/documentation/manual-svn/ch04.html#DE-9IM
check sect 4.3.6.1. Theory...
So does the Java Topology Suite (and Net Topology suite for C# etc)...
http://docs.codehaus.org/display/GEOTDOC/Point+Set+Theory+and+the+DE-9IM+Matrix
In particualr check out the geometry.relate stuff.. such as
boolean isRelated = geometry.relate( geometry2, "T*T***T**" )
You can test the relationships, or filter data based on them.
Works with pts, lines, polygons etc...
This might help on temporal stuff..
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.4643&rep=rep1&type=pdf
Check out SpatialRules at http://www.objectfx.com/. It's a geospatial complex event processor for 2D and 3D.

Resources