Image Analysis: sift / harris / affine / RANSAC - image-processing

I am not sure if this falls under the criteria of a proper question, but still, I would like to give it a shot.
I am looking for a library or function that takes two SIFT descriptors in a form of a file (or a matrix) of [number_of_keypoints][feature_0...feature_127] - meaning 128 features per file and allows comparison of images (I am using harris-affine alg. to extract them: http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/extract_features2.tar.gz ).
I am interested in a method that would allow me to find mutual nearest neighbours, that would accept number of keypoints in the neighbourhood and success ratio.
E.g.
Lets say I have two files with keypoints (described by SIFT descriptor) (image_1.sift, image_2.sift). I would like the method to accept: number of keypoints in the neighbourhood, match ratio, where match ratio means in pseudo code:
For each keypoint in image_1
Pick 50 nearest neighbours from image_1 -> List<KeyPoints> neighbours_1
For each keypoint in image_2
Pick 50 nearest neighbours from image_2 -> List<KeyPoints> neighbours_2
int numberOfMatches = 0;
foreach(neighbour in neighbours_1)
{
if(neighbour == neighbours_2.Find(neighbour))
numberOfMatches++;
}
The ratio is number of matches to number keypoints taken into consideration.
For example FindMutualKeypoints(image_1, image_2, 50, 0.7)
It can be c#, java, python or matlab implementation. I don't have much to do with image analysis on regular basis and before I start to write my own implementation, I assumed there probably is one out there already. I am having problem finding the correct terms in English from translation from my mother tongue (looks like the terms are quite different), which is probably the reason, why I could not find it yet.

I think openCV is the way to go.
Here is an example for it: link
It uses SURF descriptors, but you can also use SIFT.
You then call the FLANN matcher which also give you information about the quality of the matches.

Related

Why doesn't RANSAC remove all the outliers in SIFT matches?

I use SIFT to detect, describe feature points in two images as follows.
void FeaturePointMatching::SIFTFeatureMatchers(cv::Mat imgs[2], std::vector<cv::Point2f> fp[2])
{
cv::SiftFeatureDetector dec;
std::vector<cv::KeyPoint>kp1, kp2;
dec.detect(imgs[0], kp1);
dec.detect(imgs[1], kp2);
cv::SiftDescriptorExtractor ext;
cv::Mat desp1, desp2;
ext.compute(imgs[0], kp1, desp1);
ext.compute(imgs[1], kp2, desp2);
cv::BruteForceMatcher<cv::L2<float> > matcher;
std::vector<cv::DMatch> matches;
matcher.match(desp1, desp2, matches);
std::vector<cv::DMatch>::iterator iter;
fp[0].clear();
fp[1].clear();
for (iter = matches.begin(); iter != matches.end(); ++iter)
{
//if (iter->distance > 1000)
// continue;
fp[0].push_back(kp1.at(iter->queryIdx).pt);
fp[1].push_back(kp2.at(iter->trainIdx).pt);
}
// remove outliers
std::vector<uchar> mask;
cv::findFundamentalMat(fp[0], fp[1], cv::FM_RANSAC, 3, 1, mask);
std::vector<cv::Point2f> fp_refined[2];
for (size_t i = 0; i < mask.size(); ++i)
{
if (mask[i] != 0)
{
fp_refined[0].push_back(fp[0][i]);
fp_refined[1].push_back(fp[1][i]);
}
}
std::swap(fp_refined[0], fp[0]);
std::swap(fp_refined[1], fp[1]);
}
In the above code, I use findFundamentalMat() to remove outliers, but in the result img1 and img2 there are still some bad matches. In the images, each green line connects the matched feature point pair. And please ignore red marks. I can not find anything wrong, could anyone give me some hints? Thanks in advance.
RANSAC is just one of the robust estimators. In principle, one can use a variety of them but RANSAC has been shown to work quite well as long as your input data is not dominated by outliers. You can check other variants on RANSAC like MSAC, MLESAC, MAPSAC etc. which have some other interesting properties as well. You may find this CVPR presentation interesting (http://www.imgfsr.com/CVPR2011/Tutorial6/RANSAC_CVPR2011.pdf)
Depending on the quality of the input data, you can estimate the optimal number of RANSAC iterations as described here (https://en.wikipedia.org/wiki/RANSAC#Parameters)
Again, it is one of the robust estimator methods. You may take other statistical approaches like modelling your data with heavy tail distributions, trimmed least squares etc.
In your code you are missing the RANSAC step. RANSAC has basically 2 steps:
generate hypothesis (do a random selection of data points necessary to fit your mode: training data).
model evaluation (evaluate your model on the rest of the points: testing data)
iterate and choose the model that gives the lowest testing error.
RANSAC stands for RANdom SAmple Consensus, it does not remove outliers, it selects a group of points to calculate the fundamental matrix for that group of points. Then you need to do a re projection using the fundamental matrix just calculated with RANSAC to remove the outliers.
Like any algorithm, ransac is not perfect. You can try to run other disponible (in the opencv implementation) robust algorithms, like LMEDS. And you can reiterate, using the last points marked as inliers as input to a new estimation. And you can vary the threshold and confidence level. I suggest run ransac 1 ~ 3 times and then run LMEDS, that does not need a threshold, but only work well with at least +50% of inliers.
And, you can have geometrical order problems:
*If the baseline between the two stereo is too small the fundamental matrix estimation can be unreliable, and may be better to use findHomography() instead, for your purpose.
*if your images have some barrel/pincushin distortion, they are not in conformity with epipolar geometry and the fundamental matrix are not the correct mathematical model to link matches. In this case, you may have to calibrate your camera and then run undistort() and then process the output images.

How does BruteForce Feature Matching computes the "distance" value?

I wrote an application which detects keypoints, compute their descriptors and match them with BruteForce in OpenCV. That works like a charme.
But:
How is the distance in the match-objects computed?
For example: I'm using SIFT and get a descriptor vector with 128 float values per keypoint.
In matching, the keypoint is compared with for example 10 other descriptors with the same vectorsize.
Now, I get the "best match" with a distance of 0.723.
Is this the average of every single euclidean distance of all floats of one vector to another?
I just want to understand how this one value is created.
By default, from the Open-CV docs, the BFMatcher uses the L2-norm.
C++: BFMatcher::BFMatcher(int normType=NORM_L2, bool crossCheck=false )
Parameters:
normType – One of NORM_L1, NORM_L2, NORM_HAMMING, NORM_HAMMING2.
L1 and L2 norms are preferable choices for SIFT and SURF descriptors ...
See: http://docs.opencv.org/modules/features2d/doc/common_interfaces_of_descriptor_matchers.html?highlight=bruteforcematcher#bruteforcematcher
The best match is the feature vector with the lowest distance compared to all the others.

OpenCV - finding translation of rigid body point clould

I have 2 images sourceImg, refImg.
I've extracted the features like so:
cv::GoodFeaturesToTrackDetector detector;
std::vector<cv::KeyPoint> sourceKeyPoints, refKeyPoints;
detector.detect(sourceImg, sourceKeyPoints);
detector.detect(refImg, refKeyPoints);
I want to find the translation of an object from refImg to sourceImg. There is no rotation or perspective change, only simple 2d translation. There may be some noise.
findHomography() works fine when both sets have the same number of features extracted, even handling noise quite well.
My question is, what do I do when the number of features differs?
Can someone point me in the right direction regarding DescriptorExtractor and Matching?
Note: I can't use SURF/SIFT for patent reasons.
You could try the FlannBasedMatcherclass from OpenCV. Use this to match descriptors (of any type) and then use the best matches to find your homography.

SURF interest point parameters

I want to give alternative interest points as input to SURF using the -p1 command (I'm using the authors implementation: http://www.vision.ee.ethz.ch/~surf/download.html). But I'm not sure what to make of the parameters.
I need to give x,y,a,b,c for each interest point, and according to the README, a=c and radius= 1/a^2 (with [a,b;b,c] being the entries of the second moment matrix). But when I look at an output file of surf's IP detection, the a,c parameter is always very small (e.g. 0.003). If radius=1/a^2, then that would give a region radius of 1/(0.003^2) > 100.000 pixels. Am I misinterpreting the README file, or are the a,c parameters that surf returns incorrect?
I think the README file is misleading. If you see the code. its actually a = 1/ radius^2. That puts the radius around 20 pixels in your example. go thru the main.cpp in the library to see how the a is calculated.
Krish is probably right about the radius. I don't remember unfortunately. About the other parameters you can use.
double image size: -d
This is good if you need high-precision interest points and descriptors for e.g. 3D reconstruction. If you use your own interest points, you can try -d to use smaller descriptor regions (only if you are sure that your interest points have a high precision).
custom lobe size: -ms 3
This defines the lobe size of the interest point detector. You don't need that if you have your own interest points.
number of octaves: -oc 4
This determines how many scales you want to analyze. If you use your own interest points, this is not needed.
initial sampling step: -ss 2
Sampling step for the Hessian detector. Not needed if you use your own interest points.
U-SURF (not rotation invariant): -u
This might be interesting for you. It does not use orientation invariance. This makes it faster for images sets that are taken with an upright camera as for robots for example.
extended descriptor (SURF-128): -e
Use the extended descriptor if you want to do 3D reconstruction and robust point matches. Somehow, it does not work so good for object recognition. Use smaller descriptor for OR.
descriptor size: -in 4
This defines square size/numbers of the descriptor window (default 4x4). If you reduce this number to e.g. 2, it will produce a 16-dimensional descriptor, which is not so bad for object recognition.
Hope that helps.

Simple and fast method to compare images for similarity

I need a simple and fast way to compare two images for similarity. I.e. I want to get a high value if they contain exactly the same thing but may have some slightly different background and may be moved / resized by a few pixel.
(More concrete, if that matters: The one picture is an icon and the other picture is a subarea of a screenshot and I want to know if that subarea is exactly the icon or not.)
I have OpenCV at hand but I am still not that used to it.
One possibility I thought about so far: Divide both pictures into 10x10 cells and for each of those 100 cells, compare the color histogram. Then I can set some made up threshold value and if the value I get is above that threshold, I assume that they are similar.
I haven't tried it yet how well that works but I guess it would be good enough. The images are already pretty much similar (in my use case), so I can use a pretty high threshold value.
I guess there are dozens of other possible solutions for this which would work more or less (as the task itself is quite simple as I only want to detect similarity if they are really very similar). What would you suggest?
There are a few very related / similar questions about obtaining a signature/fingerprint/hash from an image:
OpenCV / SURF How to generate a image hash / fingerprint / signature out of the descriptors?
Image fingerprint to compare similarity of many images
Near-Duplicate Image Detection
OpenCV: Fingerprint Image and Compare Against Database.
more, more, more, more, more, more, more
Also, I stumbled upon these implementations which have such functions to obtain a fingerprint:
pHash
imgSeek (GitHub repo) (GPL) based on the paper Fast Multiresolution Image Querying
image-match. Very similar to what I was searching for. Similar to pHash, based on An image signature for any kind of image, Goldberg et al. Uses Python and Elasticsearch.
iqdb
ImageHash. supports pHash.
Image Deduplicator (imagededup). Supports CNN, PHash, DHash, WHash, AHash.
Some discussions about perceptual image hashes: here
A bit offtopic: There exists many methods to create audio fingerprints. MusicBrainz, a web-service which provides fingerprint-based lookup for songs, has a good overview in their wiki. They are using AcoustID now. This is for finding exact (or mostly exact) matches. For finding similar matches (or if you only have some snippets or high noise), take a look at Echoprint. A related SO question is here. So it seems like this is solved for audio. All these solutions work quite good.
A somewhat more generic question about fuzzy search in general is here. E.g. there is locality-sensitive hashing and nearest neighbor search.
Can the screenshot or icon be transformed (scaled, rotated, skewed ...)? There are quite a few methods on top of my head that could possibly help you:
Simple euclidean distance as mentioned by #carlosdc (doesn't work with transformed images and you need a threshold).
(Normalized) Cross Correlation - a simple metrics which you can use for comparison of image areas. It's more robust than the simple euclidean distance but doesn't work on transformed images and you will again need a threshold.
Histogram comparison - if you use normalized histograms, this method works well and is not affected by affine transforms. The problem is determining the correct threshold. It is also very sensitive to color changes (brightness, contrast etc.). You can combine it with the previous two.
Detectors of salient points/areas - such as MSER (Maximally Stable Extremal Regions), SURF or SIFT. These are very robust algorithms and they might be too complicated for your simple task. Good thing is that you do not have to have an exact area with only one icon, these detectors are powerful enough to find the right match. A nice evaluation of these methods is in this paper: Local invariant feature detectors: a survey.
Most of these are already implemented in OpenCV - see for example the cvMatchTemplate method (uses histogram matching): http://dasl.mem.drexel.edu/~noahKuntz/openCVTut6.html. The salient point/area detectors are also available - see OpenCV Feature Detection.
I face the same issues recently, to solve this problem(simple and fast algorithm to compare two images) once and for all, I contribute an img_hash module to opencv_contrib, you can find the details from this link.
img_hash module provide six image hash algorithms, quite easy to use.
Codes example
origin lena
blur lena
resize lena
shift lena
#include <opencv2/core.hpp>
#include <opencv2/core/ocl.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/img_hash.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>
void compute(cv::Ptr<cv::img_hash::ImgHashBase> algo)
{
auto input = cv::imread("lena.png");
cv::Mat similar_img;
//detect similiar image after blur attack
cv::GaussianBlur(input, similar_img, {7,7}, 2, 2);
cv::imwrite("lena_blur.png", similar_img);
cv::Mat hash_input, hash_similar;
algo->compute(input, hash_input);
algo->compute(similar_img, hash_similar);
std::cout<<"gaussian blur attack : "<<
algo->compare(hash_input, hash_similar)<<std::endl;
//detect similar image after shift attack
similar_img.setTo(0);
input(cv::Rect(0,10, input.cols,input.rows-10)).
copyTo(similar_img(cv::Rect(0,0,input.cols,input.rows-10)));
cv::imwrite("lena_shift.png", similar_img);
algo->compute(similar_img, hash_similar);
std::cout<<"shift attack : "<<
algo->compare(hash_input, hash_similar)<<std::endl;
//detect similar image after resize
cv::resize(input, similar_img, {120, 40});
cv::imwrite("lena_resize.png", similar_img);
algo->compute(similar_img, hash_similar);
std::cout<<"resize attack : "<<
algo->compare(hash_input, hash_similar)<<std::endl;
}
int main()
{
using namespace cv::img_hash;
//disable opencl acceleration may(or may not) boost up speed of img_hash
cv::ocl::setUseOpenCL(false);
//if the value after compare <= 8, that means the images
//very similar to each other
compute(ColorMomentHash::create());
//there are other algorithms you can try out
//every algorithms have their pros and cons
compute(AverageHash::create());
compute(PHash::create());
compute(MarrHildrethHash::create());
compute(RadialVarianceHash::create());
//BlockMeanHash support mode 0 and mode 1, they associate to
//mode 1 and mode 2 of PHash library
compute(BlockMeanHash::create(0));
compute(BlockMeanHash::create(1));
}
In this case, ColorMomentHash give us best result
gaussian blur attack : 0.567521
shift attack : 0.229728
resize attack : 0.229358
Pros and cons of each algorithm
The performance of img_hash is good too
Speed comparison with PHash library(100 images from ukbench)
If you want to know the recommend thresholds for these algorithms, please check this post(http://qtandopencv.blogspot.my/2016/06/introduction-to-image-hash-module-of.html).
If you are interesting about how do I measure the performance of img_hash modules(include speed and different attacks), please check this link(http://qtandopencv.blogspot.my/2016/06/speed-up-image-hashing-of-opencvimghash.html).
Does the screenshot contain only the icon? If so, the L2 distance of the two images might suffice. If the L2 distance doesn't work, the next step is to try something simple and well established, like: Lucas-Kanade. Which I'm sure is available in OpenCV.
If you want to get an index about the similarity of the two pictures, I suggest you from the metrics the SSIM index. It is more consistent with the human eye. Here is an article about it: Structural Similarity Index
It is implemented in OpenCV too, and it can be accelerated with GPU: OpenCV SSIM with GPU
If you can be sure to have precise alignment of your template (the icon) to the testing region, then any old sum of pixel differences will work.
If the alignment is only going to be a tiny bit off, then you can low-pass both images with cv::GaussianBlur before finding the sum of pixel differences.
If the quality of the alignment is potentially poor then I would recommend either a Histogram of Oriented Gradients or one of OpenCV's convenient keypoint detection/descriptor algorithms (such as SIFT or SURF).
If for matching identical images - code for L2 distance
// Compare two images by getting the L2 error (square-root of sum of squared error).
double getSimilarity( const Mat A, const Mat B ) {
if ( A.rows > 0 && A.rows == B.rows && A.cols > 0 && A.cols == B.cols ) {
// Calculate the L2 relative error between images.
double errorL2 = norm( A, B, CV_L2 );
// Convert to a reasonable scale, since L2 error is summed across all pixels of the image.
double similarity = errorL2 / (double)( A.rows * A.cols );
return similarity;
}
else {
//Images have a different size
return 100000000.0; // Return a bad value
}
Fast. But not robust to changes in lighting/viewpoint etc.
Source
If you want to compare image for similarity,I suggest you to used OpenCV. In OpenCV, there are few feature matching and template matching. For feature matching, there are SURF, SIFT, FAST and so on detector. You can use this to detect, describe and then match the image. After that, you can use the specific index to find number of match between the two images.
Hu invariant moments is very powerful tool to compare two images
Hash functions are used in the undouble library to detect (near-)identical images (disclaimer: I am also the author). This is a simple and fast way to compare two or more images for similarity. It works using a multi-step process of pre-processing the images (grayscaling, normalizing, and scaling), computing the image hash, and the grouping of images based on a threshold value.

Resources