I am try to write a neural network class but I don't fully understand some aspects of it. I have two questions on the folling design.
Am I doing this correctly? Does the bias neuron need to connect to all of neurons (except those in the input layer) or just those in the hidden layer?
My second question is about calculation the output value. I'm using the equation below to calculate the output value of the neurons.
HiddenLayerFirstNeuron.Value =
(input1.Value * weight) + (input2.Value * weight) + (Bias.Value * weight)
After this equation, I'm calculating the activation and the result send the output. And output neurons doing same.
I'm not sure what I am do and I want to clear up problems.
Take a look at: http://deeplearning.net/tutorial/contents.html in theano. This explains everything you need to know for multi layer perceptron using theano (symbolic mathematic library).
The bias is usually connected to all hidden and output units.
Yes, you compute the input of activation function like summation of weight*output of previous layer neuron.
Good luck with development ;)
There should be a separate bias neuron for each hidden and the output layer. Think of the layers as a function applied to a first order polynomials such as f(m*x+b)=y where y is your output and f(x) your activation function. If you look at the the linear term you will recognize the b. This represents the bias and it behaves similar with neural network as with this simplification: It shifts the hyperplane up and down the in the space. Keep in mind that you will have one bias per layer connected to all neurons of that layer f((wi*xi+b)+...+(wn*xn+b)) with an initial value of 1. When it comes to gradient descent, you will have to train this neuron like a normal weight.
In my opinion should you apply the activation function to the output layer as well. This is how it's usually done with multilayer perceptrons. But it actually depends of what you want. If you, for example, use the logistic function as activation function and you want an output in the interval (0,1), then you have to apply your activation function to the output as well. Since a basic linear combination, as it is in your example, can theoretically go above the boundaries of the previously mentioned Intervall.
Related
This is a classical visualization of the perceptron learning model, though I don't know where it comes from originally.
My question is How many neurons does this perceptron have? My guess is N+2, N+1 for inputs, another 1 for output. Is it correct?
The above network takes numerical inputs X1,X2,.., Xn and has weights w1 ,w2 and wn associated with those inputs. Also, there is another input 1 with weight w0 (called the bias unit) associated with it. Also this is one neuron.
This is what a bias unit does:
Bias is to provide every node with a trainable constant value (in addition to the normal inputs that the node receives).
The output is the weighted sum. Something like this:
f(x)=x1*w1+x2*w2+xn*wn+1*w0
to learn more check this, explains it very well http://117.239.79.250/moodle/pluginfile.php/6283/mod_resource/content/1/ANN1.pdf
A perceptron itself is a type of Neuron. In the figure the four inputs aren't neurons but just 4 inputs to a single neuron (perceptron). Also, the step function circle isn't n extra neuron. This step function calculation happens inside the perceptron where the weighted sum is calculated.
So what you see in the figure is a single neuron with its components broken down into fundamental parts.
I am trying to simulate a XOR gate using a neural network similar to this:
Now I understand that each neuron has certain number of weights and a bias. I am using a sigmoid function to determine whether a neuron should fire or not in each state (since this uses a sigmoid rather than a step function, I use firing in a loose sense as it actually spits out real values).
I successfully ran the simulation for feed-forwarding part, and now I want to use the backpropagation algorithm to update the weights and train the model. The question is, for each value of x1 and x2 there is a separate result (4 different combinations in total) and under different input pairs, separate error distances (the difference between the desired output and the actual result) could be be computed and subsequently a different set of weight updates will eventually be achieved. This means we would get 4 different sets of weight updates for each separate input pairs by using backpropagation.
How should we decide about the right weight updates?
Say we repeat the back propagation for a single input pair until we converge, but what if we would converge to a different set of weights if we choose another pair of inputs?
Now I understand that each neuron has certain weights. I am using a sigmoid function to determine a neuron should fire or not in each state.
You do not really "decide" this, typical MLP do not "fire", they output real values. There are neural networks which actually fire (like RBMs) but this is a completely different model.
This means we would get 4 different sets of weight updates for each input pairs by using back propagation.
This is actually a feature. Lets start from the beggining. You try to minimize some loss function on your whole training set (in your case - 4 samples), which is of form:
L(theta) = SUM_i l(f(x_i), y_i)
where l is some loss function, f(x_i) is your current prediction and y_i true value. You do this by gradient descent, thus you try to compute the gradient of L and go against it
grad L(theta) = grad SUM_i l(f(x_i), y_i) = SUM_i grad l(f(x_i), y_i)
what you now call "a single update" is grad l(f(x_i) y_i) for a single training pair (x_i, y_i). Usually you would not use this, but instead you would sum (or taken average) of updates across whole dataset, as this is your true gradient. Howver, in practise this might be computationaly not feasible (training set is usualy quite large), furthermore, it has been shown empirically that more "noise" in training is usually better. Thus another learning technique emerged, called stochastic gradient descent, which, in short words, shows that under some light assumptions (like additive loss function etc.) you can actually do your "small updates" independently, and you will still converge to local minima! In other words - you can do your updates "point-wise" in random order and you will still learn. Will it be always the same solution? No. But this is also true for computing whole gradient - optimization of non-convex functions is nearly always non-deterministic (you find some local solution, not global one).
Most examples of neural networks for classification tasks I've seen use the a softmax layer as output activation function. Normally, the other hidden units use a sigmoid, tanh, or ReLu function as activation function. Using the softmax function here would - as far as I know - work out mathematically too.
What are the theoretical justifications for not using the softmax function as hidden layer activation functions?
Are there any publications about this, something to quote?
I haven't found any publications about why using softmax as an activation in a hidden layer is not the best idea (except Quora question which you probably have already read) but I will try to explain why it is not the best idea to use it in this case :
1. Variables independence : a lot of regularization and effort is put to keep your variables independent, uncorrelated and quite sparse. If you use softmax layer as a hidden layer - then you will keep all your nodes (hidden variables) linearly dependent which may result in many problems and poor generalization.
2. Training issues : try to imagine that to make your network working better you have to make a part of activations from your hidden layer a little bit lower. Then - automaticaly you are making rest of them to have mean activation on a higher level which might in fact increase the error and harm your training phase.
3. Mathematical issues : by creating constrains on activations of your model you decrease the expressive power of your model without any logical explaination. The strive for having all activations the same is not worth it in my opinion.
4. Batch normalization does it better : one may consider the fact that constant mean output from a network may be useful for training. But on the other hand a technique called Batch Normalization has been already proven to work better, whereas it was reported that setting softmax as activation function in hidden layer may decrease the accuracy and the speed of learning.
Actually, Softmax functions are already used deep within neural networks, in certain cases, when dealing with differentiable memory and with attention mechanisms!
Softmax layers can be used within neural networks such as in Neural Turing Machines (NTM) and an improvement of those which are Differentiable Neural Computer (DNC).
To summarize, those architectures are RNNs/LSTMs which have been modified to contain a differentiable (neural) memory matrix which is possible to write and access through time steps.
Quickly explained, the softmax function here enables a normalization of a fetch of the memory and other similar quirks for content-based addressing of the memory. About that, I really liked this article which illustrates the operations in an NTM and other recent RNN architectures with interactive figures.
Moreover, Softmax is used in attention mechanisms for, say, machine translation, such as in this paper. There, the Softmax enables a normalization of the places to where attention is distributed in order to "softly" retain the maximal place to pay attention to: that is, to also pay a little bit of attention to elsewhere in a soft manner. However, this could be considered like to be a mini-neural network that deals with attention, within the big one, as explained in the paper. Therefore, it could be debated whether or not Softmax is used only at the end of neural networks.
Hope it helps!
Edit - More recently, it's even possible to see Neural Machine Translation (NMT) models where only attention (with softmax) is used, without any RNN nor CNN: http://nlp.seas.harvard.edu/2018/04/03/attention.html
Use a softmax activation wherever you want to model a multinomial distribution. This may be (usually) an output layer y, but can also be an intermediate layer, say a multinomial latent variable z. As mentioned in this thread for outputs {o_i}, sum({o_i}) = 1 is a linear dependency, which is intentional at this layer. Additional layers may provide desired sparsity and/or feature independence downstream.
Page 198 of Deep Learning (Goodfellow, Bengio, Courville)
Any time we wish to represent a probability distribution over a discrete variable with n possible values, we may use the softmax function. This can be seen as a generalization of the sigmoid function which was used to represent a probability
distribution over a binary variable.
Softmax functions are most often used as the output of a classifier, to represent the probability distribution over n different classes. More rarely, softmax functions can be used inside the model itself, if we wish the model to choose between one of n different options for some internal variable.
Softmax function is used for the output layer only (at least in most cases) to ensure that the sum of the components of output vector is equal to 1 (for clarity see the formula of softmax cost function). This also implies what is the probability of occurrence of each component (class) of the output and hence sum of the probabilities(or output components) is equal to 1.
Softmax function is one of the most important output function used in deep learning within the neural networks (see Understanding Softmax in minute by Uniqtech). The Softmax function is apply where there are three or more classes of outcomes. The softmax formula takes the e raised to the exponent score of each value score and devide it by the sum of e raised the exponent scores values. For example, if I know the Logit scores of these four classes to be: [3.00, 2.0, 1.00, 0.10], in order to obtain the probabilities outputs, the softmax function can be apply as follows:
import numpy as np
def softmax(x):
z = np.exp(x - np.max(x))
return z / z.sum()
scores = [3.00, 2.0, 1.00, 0.10]
print(softmax(scores))
Output: probabilities (p) = 0.642 0.236 0.087 0.035
The sum of all probabilities (p) = 0.642 + 0.236 + 0.087 + 0.035 = 1.00. You can try to substitute any value you know in the above scores, and you will get a different values. The sum of all the values or probabilities will be equal to one. That’s makes sense, because the sum of all probability is equal to one, thereby turning Logit scores to probability scores, so that we can predict better. Finally, the softmax output, can help us to understand and interpret Multinomial Logit Model. If you like the thoughts, please leave your comments below.
I am learning neural networks for the first time. I was trying to understand how using a single hidden layer function approximation can be performed. I saw this example on stackexchange but I had some questions after going through one of the answers.
Suppose I want to approximate a sine function between 0 and 3.14 radians. So will I have 1 input neuron? If so, then next if I assume K neurons in the hidden layer and each of which uses a sigmoid transfer function. Then in the output neuron(if say it just uses a linear sum of results from hidden layer) how can be output be something other than sigmoid shape? Shouldn't the linear sum be sigmoid as well? Or in short how can a sine function be approximated using this architecture in a Neural network.
It is possible and it is formally stated as the universal approximation theorem. It holds for any non-constant, bounded, and monotonically-increasing continuous activation function
I actually don't know the formal proof but to get an intuitive idea that it is possible I recommend the following chapter: A visual proof that neural nets can compute any function
It shows that with the enough hidden neurons and the right parameters you can create step functions as the summed output of the hidden layer. With step functions it is easy to argue how you can approximate any function at least coarsely. Now to get the final output correct the sum of the hidden layer has to be since the final neuron then outputs: . And as already said, we are be able to approximate this at least to some accuracy.
Given a target function f: R^4 -> R^2, can you draw me(give me an example) an Artificial Neural Network , lets say with two layers, and 3 nodes in the hidden layer.
Now, I think I understand how an ANN works when a function is like [0,1]^5 ->[0,1], but I am not quite sure how to do an example from R4 to R2.
I am new to machine learning, and it's a little bit diffult to catch up with all this concepts.
Thanks in advance.
First, you need two neurons in the output layer. Each neuron would correspond to one dimension of your output space.
Neurons in the output layer don't need an activation function that limits their values in the [0,1] interval (e.g. the logistic function). And even if you scale your output space in the interval [0,1], don't use a sigmoid function for activation.
Although your original data is not in [0,1]^4, you should do some preprocessing to scale and shift them to have mean zero and variance 1. You must apply same preprocessing to all your examples (training and test).
This should give you something to build up on.