Use Fitnesse symbol to inject baseUrl into RestFixture - fitnesse

I'd like to set the baseUrl for a table based on the outcome of another test (on the same page).
I tried following these pages of Fitnesse's docs (and other resources) :
smartrics blog post, fitnesse symbols page,
but I can't seem to get it working.
So far I've tried with the following syntaxes :
| Fit Rest Fixture | %emailLink% |
| GET | / | 200 |Content-Type: text/plain|Email Verified|
| Fit Rest Fixture | emailLink= |
| GET | / | 200 |Content-Type: text/plain|Email Verified|
| Fit Rest Fixture | $emailLink |
| GET | / | 200 |Content-Type: text/plain|Email Verified|
but none of those work.
I know that the emailLink symbol is not null because I'm testing it in another table, but I can't seem to inject it into the RestFixture.
I always get an IllegalArgumentException indicating that the symbol name has not been resolved against its value, e.g.
java.lang.IllegalArgumentException: Malformed base URL: $emailLink
Any help would be appreciated.

Are you using slim?
http://www.fitnesse.org/FitNesse.UserGuide.WritingAcceptanceTests.SliM.SymbolsInTables
I have used symbols in this way a few time with Slim, but not the REST Fixture specifically.

By taking a look at the code of FitRestFixture and fiddling with it, I've come up with something that works for me.
It seems that the feature I was looking for is not supported out of the box, but can be easily achieved (although this way is not the cleanest) with a simple mod such as the following :
/**
* #return Process args ({#link fit.Fixture}) for Fit runner to extract the
* baseUrl of each Rest request, first parameter of each RestFixture
* table.
*/
protected String getBaseUrlFromArgs() {
String arg = null;
if (args.length > 0) {
arg = args[0];
/* mod starts here */
if (isSymbol(arg)) {
String symbolName = stripSymbolNotation(arg);
arg = resolveSymbol(symbolName);
}
/* mod ends here */
}
return arg;
}
private boolean isSymbol(String arg) {
// notice that I've used the '<<' notation convention to extract the
// the value from a symbol, while in RestFixture the conventional
// notation is %symbolName%
return null != arg && arg.startsWith("<<");
}
private String stripSymbolNotation(String arg) {
return arg.substring(2);
}
private String resolveSymbol(String arg) {
String symbolValue = (String) Fixture.getSymbol(arg);
LOG.warn(String.format("resolved symbol %s to value %s", arg, symbolValue));
return symbolValue;
}

Related

Weird antlr grammar rule

I have found an old file that define antlr grammar rules like that:
rule_name[ ParamType *param ] > [ReturnType *retval]:
<<
$retval = NULL;
OtherType1 *new_var1 = NULL;
OtherType2 *new_var2 = NULL;
>>
subrule1[ param ] > [ $retval ]
| subrule2 > [new_var2]
<<
if( new_var2 == SOMETHING ){
$retval = something_related_to_new_var2;
}
else{
$retval = new_var2;
}
>>
{
somethingelse > [new_var_1]
<<
/* Do something with new_var_1 */
$retval = new_var_1;
>>
}
;
I'm not an Antlr expert and It's the first time that i see this kind of semantic for a rule definition.
Does anybody know where I can find documentation/informations about this?
Even a keyword for a google search is welcome.
Edit:
It should be ANTLR Version 1.33MR33.
Ok, I found! Here is the guide:
http://www.antlr2.org/book/pcctsbk.pdf
I quote the interesting part of the pdf that answer to my question.
1) Page 47:
poly > [float r]
: <<float f;>>
term>[$r] ( "\+" term>[f] <<$r += f;>> )*
;
Rule poly is defined to have a return value called $r via the "> [float r]" notation; this is similar to the output redirection character of UNIX shells. Setting the value of $r sets the return value of poly. he first action after the ":" is an init-action (because it is the first action of a rule or subrule). The init-action defines a local variable called f that will be used in the (...)* loop to hold the return value of the term.
2) Page 85:
A rule looks like:
rule : alternative1
| alternative2
...
| alternativen
;
where each alternative production is composed of a list of elements that can be references to rules, references to tokens, actions, predicates, and subrules. Argument and return value definitions looks like the following where there are n arguments and m return values:
rule[arg1,...,argn] > [retval1,...,retvalm] : ... ;
The syntax for using a rule mirrors its definition:
a : ... rule[arg1,...,argn] > [v1,...,vm] ...
;
Here, the various vi receive the return values from the rule rule, each vi must be an l-value.
3) Page 87:
Actions are of the form <<...>> and contain user-supplied C or C++ code that must be executed during the parse.

Create query with multiple answers for each cell

So I have got 3 sheets with 2 predefined ranges as you can see them in the Example:
# RangeA # RangeB # Wanted Result
======== ======== ===============
A | B A A
-------- -------- ---------------
1 | a a a
2 | a b 1
3 | a 2
4 | b 3
5 | b b
6 | b 4
7 | c 5
8 | c 6
9 | c
...
Now I would like to have a Formular to get the wanted result I have been searching quite long time today already, but I wasn't successful. I hope there is anybody who may help me.
I hope the example is clear enough to understand what i want to do.
Thanks in advance for your time.
I solved it in the end with google apps script.
The function I used is pretty simple just two for loops:
/*
* Merge merges two arrays to get one list of wanted values
* #param needle {array} is a list of wanted values
* #param haystack {array} is a list of values and their group
* #return returns a list of merged values in the format group, value,
* value, group ...
**/
function Merge(needle, haystack) {
var result = [];
// Set default values to parameters if parameter is not set.
needle = needle || [[]];
haystack = haystack || [[]];
// Filter the array and remove empty items. # RangeB
needle = needle.filter(function(item){
return item[0];
});
// Filter the second array and remove empty or incomplete items # RangeA
haystack = haystack.filter(function(item){
return item[0] && item[1];
});
// Merge both arrays to get the # Wanted Result
needle.forEach(function(item){
result.push([item[0]]);
haystack.forEach(function(needle){
if(item[0] == needle[1]) {
result.push([needle[0]]);
}
});
});
// Check if the result has a length
if(result.length > 0) {
return result;
}
// else return null to overcome the #error message
return null;
}

ANTLR Tree Grammar for loops

I'm trying to implement a parser by directly reading a treeWalker and implementing the commands needed for the compiler on the fly. So if I have a command like:
statement
:
^('WRITE' expression)
{
//Here is the command that is created by my Tree Parser
ch.emitRO("OUT",0,0,0,"write out the value of ac");
//and then I handle it in my other classes
}
;
I want it to write OUT 0,0,0; to a file. That's my grammar.
I have a problem though with the loop section in my grammar it is:
'WHILE'^ expression 'DO' stat_seq 'ENDDO'
and in the tree parser:
doWhileStatement
:
^('WHILE' expression 'DO' stat_seq 'ENDDO')
;
What I want to do is directly parse the code from the while loop into the commands I need. I came up with this solution but it doesn't work:
doWhileStatement
:
^('WHILE' e=expression head='DO'
{
int loopHead =((CommonTree) head).getTokenStartIndex();
}
stat_seq
{
if ($e.result==1) {
input.seek(loopHead);
doWhileStatement();
}
}
'ENDDO')
;
for the record here are some of the other commands I've written:
(ignore the code written in brackets, it's for the generation of the commands in a text file.)
stat_seq
:
(statement)+
;
statement
:
^(':=' ID e=expression) { variables.put($ID.text,e); }
| ^('WRITE' expression)
{
ch.emitRM("LDC",ac,$expression.result,0,"pass the expression value to the ac reg");
ch.emitRO("OUT",ac,0,0,"write out the value of ac");
}
| ^('READ' ID)
{
ch.emitRO("IN",ac,0,0,"read value");
}
| ^('IF' expression 'THEN'
{
ch.emitRM("LDC",ac1,$expression.result,0,"pass the expression result to the ac reg");
int savedLoc1 = ch.emitSkip(1);
}
sseq1=stat_seq
'ELSE'
{
int savedLoc2 = ch.emitSkip(1);
ch.emitBackup(savedLoc1);
ch.emitRM("JEQ",ac1,savedLoc2+1,0,"skip as many places as needed depending on the expression");
ch.emitRestore();
}
sseq2=stat_seq
{
int savedLoc3 = ch.emitSkip(0);
ch.emitBackup(savedLoc2);
ch.emitRM("LDC",PC_REG,savedLoc3,0,"skip for the else command");
ch.emitRestore();
}
'ENDIF')
| doWhileStatement
;
Any help would be appreciated, thank you
I found it for everyone who has the same problem I did it like this and it's working:
^('WHILE'
{int c = input.index();}
expression
{int s=input.index();}
.* )// .* is a sequence of statements
{
int next = input.index(); // index of node following WHILE
input.seek(c);
match(input, Token.DOWN, null);
pushFollow(FOLLOW_expression_in_statement339);
int condition = expression();
state._fsp--;
//there is a problem here
//expression() seemed to be reading from the grammar file and I couldn't
//get it to read from the tree walker rule somehow
//It printed something like no viable alt at input 'DOWN'
//I googled it and found this mistake
// So I copied the code from the normal while statement
// And pasted it here and it works like a charm
// Normally there should only be int condition = expression()
while ( condition == 1 ) {
input.seek(s);
stat_seq();//stat_seq is a sequence of statements: (statement ';')+
input.seek(c);
match(input, Token.DOWN, null); //Copied value from EvaluatorWalker.java
//cause couldn't find another way to do it
pushFollow(FOLLOW_expression_in_statement339);
condition = expression();
state._fsp--;
System.out.println("condition:"+condition + " i:"+ variables.get("i"));
}
input.seek(next);
}
I wrote the problem at the comments of my code. If anyone can help me out and answer this for me how to do it I would be grateful. It's so weird that there is nearly no feedback on a correct way to implement loops within a tree grammar on the fly.
Regards,
Alex

How to avoid building intermediates and useless AST nodes with ANTLR3?

I wrote an ANTLR3 grammar subdivided into smaller rules to increase readability.
For example:
messageSequenceChart:
'msc' mscHead bmsc 'endmsc' end
;
# Where mscHead is a shortcut to :
mscHead:
mscName mscParameterDecl? timeOffset? end
mscInstInterface? mscGateInterface
;
I know the built-in ANTLR AST building feature allows the user to declare intermediate AST nodes that won't be in the final AST. But what if you build the AST by hand?
messageSequenceChart returns [msc::MessageSequenceChart* n = 0]:
'msc' mscHead bmsc'endmsc' end
{
$n = new msc::MessageSequenceChart(/* mscHead subrules accessors like $mscHead.mscName.n ? */
$bmsc.n);
}
;
mscHead:
mscName mscParameterDecl? timeOffset? end
;
The documentation does not talk about such a thing. So it looks like I will have to create nodes for every intermediate rules to be able to access their subrules result.
Does anyone know a better solution ?
Thank you.
You can solve this by letting your sub-rule(s) return multiple values and accessing only those you're interested in.
The following demo shows how to do it. Although it is not in C, I am confident that you'll be able to adjust it so that it fits your needs:
grammar Test;
parse
: sub EOF {System.out.printf("second=\%s\n", $sub.second);}
;
sub returns [String first, String second, String third]
: a=INT b=INT c=INT
{
$first = $a.text;
$second = $b.text;
$third = $c.text;
}
;
INT
: '0'..'9'+
;
SPACE
: ' ' {$channel=HIDDEN;}
;
And if your parse the input "12 34 56" with the generated parser, second=34 is printed to the console, as you can see after running:
import org.antlr.runtime.*;
public class Main {
public static void main(String[] args) throws Exception {
TestLexer lex = new TestLexer(new ANTLRStringStream("12 34 56"));
TokenStream tokens = new TokenRewriteStream(lex);
TestParser parser = new TestParser(tokens);
parser.parse();
}
}
So, a shortcut from the parse rule like $sub.INT, or $sub.$a to access one of the three INT tokens, in not possible, unfortunately.

How to find functions in a cpp file that contain a specific word

using grep, vim's grep, or another unix shell command, I'd like to find the functions in a large cpp file that contain a specific word in their body.
In the files that I'm working with the word I'm looking for is on an indented line, the corresponding function header is the first line above the indented line that starts at position 0 and is not a '{'.
For example searching for JOHN_DOE in the following code snippet
int foo ( int arg1 )
{
/// code
}
void bar ( std::string arg2 )
{
/// code
aFunctionCall( JOHN_DOE );
/// more code
}
should give me
void bar ( std::string arg2 )
The algorithm that I hope to catch in grep/vim/unix shell scripts would probably best use the indentation and formatting assumptions, rather than attempting to parse C/C++.
Thanks for your suggestions.
I'll probably get voted down for this!
I am an avid (G)VIM user but when I want to review or understand some code I use Source Insight. I almost never use it as an actual editor though.
It does exactly what you want in this case, e.g. show all the functions/methods that use some highlighted data type/define/constant/etc... in a relations window...
(source: sourceinsight.com)
Ouch! There goes my rep.
As far as I know, this can't be done. Here's why:
First, you have to search across lines. No problem, in vim adding a _ to a character class tells it to include new lines. so {_.*} would match everything between those brackets across multiple lines.
So now you need to match whatever the pattern is for a function header(brittle even if you get it to work), then , and here's the problem, whatever lines are between it and your search string, and finally match your search string. So you might have a regex like
/^\(void \+\a\+ *(.*)\)\_.*JOHN_DOE
But what happens is the first time vim finds a function header, it starts matching. It then matches every character until it finds JOHN_DOE. Which includes all the function headers in the file.
So the problem is that, as far as I know, there's no way to tell vim to match every character except for this regex pattern. And even if there was, a regex is not the tool for this job. It's like opening a beer with a hammer. What we should do is write a simple script that gives you this info, and I have.
fun! FindMyFunction(searchPattern, funcPattern)
call search(a:searchPattern)
let lineNumber = line(".")
let lineNumber = lineNumber - 1
"call setpos(".", [0, lineNumber, 0, 0])
let lineString = getline(lineNumber)
while lineString !~ a:funcPattern
let lineNumber = lineNumber - 1
if lineNumber < 0
echo "Function not found :/"
endif
let lineString = getline(lineNumber)
endwhile
echo lineString
endfunction
That should give you the result you want and it's way easier to share, debug, and repurpose than a regular expression spit from the mouth of Cthulhu himself.
Tough call, although as a starting point I would suggest this wonderful VIM Regex Tutorial.
You cannot do that reliably with a regular expression, because code is not a regular language. You need a real parser for the language in question.
Arggh! I admit this is a bit over the top:
A little program to filter stdin, strip comments, and put function bodies on the same line. It'll get fooled by namespaces and function definitions inside class declarations, besides other things. But it might be a good start:
#include <stdio.h>
#include <assert.h>
int main() {
enum {
NORMAL,
LINE_COMMENT,
MULTI_COMMENT,
IN_STRING,
} state = NORMAL;
unsigned depth = 0;
for(char c=getchar(),prev=0; !feof(stdin); prev=c,c=getchar()) {
switch(state) {
case NORMAL:
if('/'==c && '/'==prev)
state = LINE_COMMENT;
else if('*'==c && '/'==prev)
state = MULTI_COMMENT;
else if('#'==c)
state = LINE_COMMENT;
else if('\"'==c) {
state = IN_STRING;
putchar(c);
} else {
if(('}'==c && !--depth) || (';'==c && !depth)) {
putchar(c);
putchar('\n');
} else {
if('{'==c)
depth++;
else if('/'==prev && NORMAL==state)
putchar(prev);
else if('\t'==c)
c = ' ';
if(' '==c && ' '!=prev)
putchar(c);
else if(' '<c && '/'!=c)
putchar(c);
}
}
break;
case LINE_COMMENT:
if(' '>c)
state = NORMAL;
break;
case MULTI_COMMENT:
if('/'==c && '*'==prev) {
c = '\0';
state = NORMAL;
}
break;
case IN_STRING:
if('\"'==c && '\\'!=prev)
state = NORMAL;
putchar(c);
break;
default:
assert(!"bug");
}
}
putchar('\n');
return 0;
}
Its c++, so just it in a file, compile it to a file named 'stripper', and then:
cat my_source.cpp | ./stripper | grep JOHN_DOE
So consider the input:
int foo ( int arg1 )
{
/// code
}
void bar ( std::string arg2 )
{
/// code
aFunctionCall( JOHN_DOE );
/// more code
}
The output of "cat example.cpp | ./stripper" is:
int foo ( int arg1 ) { }
void bar ( std::string arg2 ){ aFunctionCall( JOHN_DOE ); }
The output of "cat example.cpp | ./stripper | grep JOHN_DOE" is:
void bar ( std::string arg2 ){ aFunctionCall( JOHN_DOE ); }
The job of finding the function name (guess its the last identifier to precede a "(") is left as an exercise to the reader.
For that kind of stuff, although it comes to primitive searching again, I would recommend compview plugin. It will open up a search window, so you can see the entire line where the search occured and automatically jump to it. Gives a nice overview.
(source: axisym3.net)
Like Robert said Regex will help. In command mode start a regex search by typing the "/" character followed by your regex.
Ctags1 may also be of use to you. It can generate a tag file for a project. This tag file allows a user to jump directly from a function call to it's definition even if it's in another file using "CTRL+]".
u can use grep -r -n -H JOHN_DOE * it will look for "JOHN_DOE" in the files recursively starting from the current directory
you can use the following code to practically find the function which contains the text expression:
public void findFunction(File file, String expression) {
Reader r = null;
try {
r = new FileReader(file);
} catch (FileNotFoundException ex) {
ex.printStackTrace();
}
BufferedReader br = new BufferedReader(r);
String match = "";
String lineWithNameOfFunction = "";
Boolean matchFound = false;
try {
while(br.read() > 0) {
match = br.readLine();
if((match.endsWith(") {")) ||
(match.endsWith("){")) ||
(match.endsWith("()")) ||
(match.endsWith(")")) ||
(match.endsWith("( )"))) {
// this here is because i guessed that method will start
// at the 0
if((match.charAt(0)!=' ') && !(match.startsWith("\t"))) {
lineWithNameOfFunction = match;
}
}
if(match.contains(expression)) {
matchFound = true;
break;
}
}
if(matchFound)
System.out.println(lineWithNameOfFunction);
else
System.out.println("No matching function found");
} catch (IOException ex) {
ex.printStackTrace();
}
}
i wrote this in JAVA, tested it and works like a charm. has few drawbacks though, but for starters it's fine. didn't add support for multiple functions containing same expression and maybe some other things. try it.

Resources