should I add derivable features to a feature vector? - machine-learning

For supervised learning (like classification), is it a good idea to add new derivable features to a given feature set with the hope of improving accuracy?
For example:
- if "unit_price" and "no_of_units" are two given features, does it make sense to create a new feature "amount" (which is unit_price*no_of_units)?
- if "standard_deviation" is a given feature, is it a good idea to create a new feature "variance" (which is standard_deviation^2)?
Is there a theoretical guideline for this, or is it just a matter of trial-and-error?
Thank you.

IMHO yes ,you can add new features like that..look at 'Kernel' in SVM where you can add feature xy if you have two features x and y.

Related

new features in dataset

I'm now in the middle of the semester and trying to understand the background of the algorithms and features.
I would like to understand some theory.
If I have a dataset with N samples.
each sample has 5 features for example.
I have done 3 kinds of classifications algorithms for example : SVM, decision tree and kMeans.
In all 3, I got nice results
In a mystery way, a new feature added to the dataset. The value of the features for every sample selected randomly.
I restarted the algorithms on the dataset ( with the new feature)
Are the classification results gonna change from the first results without the new feature? If yes, why are they gonna change and by how much ?
In addition, if I do not have the dataset how can I know how to recognize that new feature?
The results of your classification algorithm are going to either change or stay the same depending on how much information the model gains from the feature. If the feature for instance is random noise then it will have little to no effect on your model, other than slowing it down. If it contains useful information it might be able to increase parameters such as recall and precision. Hope this might help.

How do I create a feature vector if I don’t have all the data?

So say for each of my ‘things’ to classify I have:
{house, flat, bungalow, electricityHeated, gasHeated, ... }
Which would be made into a feature vector:
{1,0,0,1,0,...} which would mean a house that is heated by electricity.
For my training data I would have all this data- but for the actual thing I want to classify I might only have what kind of house it is, and a couple other things- not all the data ie.
{1,0,0,?,?,...}
So how would I represent this?
I would want to find the probability that a new item would be gasHeated.
I would be using a SVM linear classifier- I don’t have any core to show because this is purely theoretical at the moment. Any help would be appreciated :)
When I read this question, it seems that you may have confused with feature and label.
You said that you want to predict whether a new item is "gasHeated", then "gasHeated" should be a label rather than a feature.
btw, one of the most-common ways to deal with missing value is to set it as "zero" (or some unused value, say -1). But normally, you should have missing value in both training data and testing data to make this trick be effective. If this only happened in your testing data but not in your training data, it means that your training data and testing data are not from the same distribution, which basically violated the basic assumption of machine learning.
Let's say you have a trained model and a testing sample {?,0,0,0}. Then you can create two new testing samples, {1,0,0,0}, {0,0,0,0}, and you will have two predictions.
I personally don't think SVM is a good approach if you have missing values in your testing dataset. Just like I have mentioned above, although you can get two new predictions, but what if each one has different predictions? It is difficult to assign a probability to results of SVM in my opinion unless you use logistic regression or Naive Bayes. I would prefer Random Forest in this situation.

Randomly feature mapping

I'm taking machine learning course In the second part of exercise 2, we are supposed to use feature map. And they added new features by mapping the features into all polynomial terms of x1 and x2 up to the sixth power. However, my instructor told me I shouldn't use this algorithm and instead I should randomly add features. However, we add new features in order to better classify.So wouldn't adding features randomly make this more complicated? So can we add features randomly or should we follow some rule?
Adding new features (e.g. polynomial of the existing features) helps to reduce the error by using complex hypothesis. But this may lead to overfitting the training data and may not produce efficient results on the test set.
So, in order to add new features, following should be considered:
1) Manually select which feature to keep by analyzing the results.
2) Other way is use all features and then use regularization which will automatically give less importance to less contributing features and more importance to more contributing features towards target variable.
3) Randomly selecting features may or may not help always. It is always required to choose those features which contribute more towards target variable. Random selection may not be the appropriate solution.
Important Note
Always use validation set to check the error during training.
While working with polynomial features, always check the learning curve to see model should not overfitting the train data. If such happens, try to increase the regularization parameter (lambda). Regularization helps in reducing over fitting.

Beginners guide to troubleshooting badly performing models

Im creating my first predictive model and its results are absolutely awful.
Im in need of some help identifying how i troubleshoot this.
Im doing linear regression & logistic regression classification, to predict if a student will pass a course, 1 for yes, 0 for no.
The dataset is tiny, as we only have complete data for one class, 16 features just under 60 rows, 35 passed and 25 failed.
I'm wondering if my dataset is simply too small.
I dont want to share the dataset just yet, but will clean it up so its completely anonymous.
The ROC is very very jagged and mostly (for log regression), and predicts more false positives than anything else.
Id appreciate some general troubleshooting advice for a beginner that i can try before we hire in a professional.
Thanks for any help provided.
Id suggest some tips:
In Azure ML theres a module called "filter based feature selection", you can use it to score your features and check if there is really predictive power in them or even select just the ones with the highest score.
If you haven't ,splitt in train/cross validation set and evaluate your model in both and use it as a diagnosis to identify underfitting(high bias) or overfitting(high variance), and depending on the diagnosis perform actions like:
For overfitting: get more data, use less features, use a less complex model , add or increase regularization
For underfitting: add more features, use a more complex model, decrease regularization.
And don't forget ,before start training to explore and evaluate your data, use scatter plots to see if indeed its separable, perform feature engineering and preprocessing for this ask yourself: given this features, would a human expert be able to perform predictions?, if your answer is not, transform or drop features so that the answer is positive

How to discover new classes in a classification machine learning algorithm?

I'm using a multiclass classifier (a Support Vector Machine, via One-Vs-All) to classify data samples. Let's say I currently have n distinct classes.
However, in the scenario I'm facing, it is possible that a new data sample may belong to a new class n+1 that hasn't been seen before.
So I guess you can say that I need a form of Online Learning, as there is no distinct training set in the beginning that suits all data appearing later. Instead I need the SVM to adapt dynamically to new classes that may appear in the future.
So I'm wondering about if and how I can...
identify that a new data sample does not quite fit into the existing classes but instead should result in creating a new class.
integrate that new class into the existing classifier.
I can vaguely think of a few ideas that might be approaches to solve this problem:
If none of the binary SVM classifiers (as I have one for each class in the OVA case) predicts a fairly high probability (e.g. > 0.5) for the new data sample, I could assume that this new data sample may represent a new class.
I could train a new binary classifier for that new class and add it to the multiclass SVM.
However, these are just my naive thoughts. I'm wondering if there is some "proper" approach for this instead, e.g. using a Clustering algorithms to find all classes.
Or maybe my approach of trying to use an SVM for this is not even appropriate for this kind of problem?
Help on this is greatly appreciated.
As in any other machine learning problem, if you do not have a quality criterion, you suck.
When people say "classification", they have supervised learning in mind: there is some ground truth against which you can train and check your algorithms. If new classes can appear, this ground truth is ambiguous. Imagine one class is "horse", and you see many horses: black horses, brown horses, even white ones. And suddenly you see a zebra. Whoa! Is it a new class or just an unusual horse? The answer will depend on how you are going to use your class labels. The SVM itself cannot decide, because SVM does not use these labels, it only produces them. The decision is up to a human (or to some decision-making algorithm which knows what is "good" and "bad", that is, has its own "loss function" or "utility function").
So you need a supervisor. But how can you assist this supervisor? Two options come to mind:
Anomaly detection. This can help you with early occurences of new classes. After the very first zebra your algorithm sees it can raise an alarm: "There is something unusual!". For example, in sklearn various algorithms from random forest to one-class SVM can be used to detect unusial observations. Then your supervisor can look at them and decide whether they deserve to form an entirely new class.
Clustering. It can help you to make decision about splitting your classes. For example, after the first zebra, you decided it is not worth making a new class. But over time, your algorithm has accumulated dozens of their images. So if you run a clustering algorithm on all the observations labeled as "horses", you might end up with two well-separated clusters. And it will be again up to the supervisor to decide, whether the striped horses should be detached from the plain ones into a new class.
If you want this decision to be purely authomatic, you can split classes if the ratio of within-cluster mean distance to between-cluster distance is low enough. But it will work well only if you have a good distance metric in the first place. And what is "good" is again defined by how you use your algorithms and what your ultimate goal is.

Resources