How to use principal component analysis (PCA) to speed up detection? - machine-learning

I am not sure whether I am applying PCA correctly or not! I have p features and n observations (instances). I put these in an nxp matrix X. I perform mean normalization and I get the normalized matrix B. I calculate the eigenvalues and eigenvectors of the pxp covariance matrix C=(1/(n-1))B*.B where * denotes the conjugate transpose.
The eigenvectors corresponding to the descendingly ordered eigenvalues are in a pxp matrix E. Let's say I want to reduce the number of attributes from p to k. I use the equation X_new=B.E_reduced where E_reduced is produced by choosing the first k columns of E. Here are my questions:
1) Should it be X_new=B.E_reduced or X_new=X.E_reduced?
2) Should I repeat the above calculations in the testing phase? If testing phase is similar to training phase, then no speed-up is gained because I have to calculate all the p features for each instance in the testing phase and PCA makes the algorithm slower because of eigenvector calculation overhead.
3) After applying PCA, I noticed that the accuracy decreased. Is this related to the number k (I set k=p/2) or the fact that I am using linear PCA instead of kernel PCA? What is the best way to choose the number k? I read that I can find the ratio of summation of k eigenvalues over the summation of all eigenvalues and make a decision based on this ratio.

You apply the multiplication to the centered data usually, so your projected data is also centered.
Never re-run PCA during testing. Only usenit on training data, and keep the shift vector and projection matrix. You need to apply exactly the same projection as during training, not recompute a new projection.
Decreased performance can have many reasons. E.g. did you also apply scaling using the roots of the eigenvalues? And what method did you use the first place?

Related

Does loss function becomes non convex when we add polynomial features?

When we use polynomial features in case of polynomial regression, logistic regression, svm , does the loss function becomes non convex ?
If a loss function is convex for any choice of X -> y you're trying to estimate then adding a fixed set of polynomial features won't change that. You're simply trading your initial problem with the estimation problem X' -> y, where X' has the additional features.
If you're additionally trying to estimate the parameters for the new feature(s) then it's pretty easy to get a non-convex loss in those dimensions (assuming there are parameters to choose -- if you're just talking about adding a polynomial basis then this doesn't apply).
As some measure of proof, take the example of a 1D estimation problem and choose the feature f(x) = (x-a)^3. Assume your dataset has the single point (0, 0). With a little work you can show that the loss even for linear regression over the new feature is non-convex in places with respect to the parameter a. Note that the loss IS still convex with respect to the new features -- standard linear regression always satisfies that property -- it's the fact that we used linear regression along with a choice of polynomial to build a new non-convex regressor that causes this behavior.

Bag of Words with HOG descriptors

I'm not quite sure how to implement the "Bag of Words" approach with HOG descriptors.
I've checked several sources which usually provide several steps to follow:
Compute the HOGs for the set of valid training images.
Apply an clustering algorithm to retrieve n centroids from the descriptors.
Perform some magic to create histograms with the frequency of the nearest centroids of the computed HOGs or use OpenCVs implementation to do this.
Train a linear SVM with the histograms
The step which involves magic (3) is not really clear. If I don't use OpenCV, how would I implement it?
The HOGs are vectors which are calculated cell-wise. So I have a vector for each cell. I could iterate over the vector and calculate the closest centroid for each element of the vector and create the histogram accordingly. Would this be a proper way to do it? But if so, I still have vectors of different sizes and no benefit from it.
Main steps can be expressed;
1- Extract features from your entire training set. (HOG feature for your aim)
2- Cluster those features into a vocabulary V; you get K distinct cluster centers.(K-Means, K-Medoid. Your hyperparameter will be K)
3- Encode each training image as a histogram of the number of times each vocabulary element shows up in the image. Each image is then represented by a length-K vector.
For example; first element of K maybe occurs 5 times, second element of K maybe occurs 10 times in your image. Doesn't matter at the end you will have a vector which has K elements.
K[0] = 5
k[1] = 10
....
....
K[n] = 3
4- Train the classifier using this vector. (Linear SVM)
When given a test image, extract the features. Now represent the test image as a histogram of the number of times each cluster center from V was closest to a feature in the test image. This is a length K vector again.

PCA resulting dimension in Bag of Visual Words/Features?

In this question I ask what is a reasonable dimension for a vector in the Bag of Features model. since k is big and so the number of dimensions is too big to be managed efficiently, PCA is performed in order to reduce the number of dimensions. What is the usual resulting vector dimension (related to the starting k -dimension vector) in such an application?
Usually, PCA is not used.
Because you then lose sparsity. For performance reasons you want to have sparse vectors, so don't use PCA.

how to interpret the "soft" and "max" in the SoftMax regression?

I know the form of the softmax regression, but I am curious about why it has such a name? Or just for some historical reasons?
The maximum of two numbers max(x,y) could have sharp corners / steep edges which sometimes is an unwanted property (e.g. if you want to compute gradients).
To soften the edges of max(x,y), one can use a variant with softer edges: the softmax function. It's still a max function at its core (well, to be precise it's an approximation of it) but smoothed out.
If it's still unclear, here's a good read.
Let's say you have a set of scalars xi and you want to calculate a weighted sum of them, giving a weight wi to each xi such that the weights sum up to 1 (like a discrete probability). One way to do it is to set wi=exp(a*xi) for some positive constant a, and then normalize the weights to one. If a=0 you get just a regular sample average. On the other hand, for a very large value of a you get max operator, that is the weighted sum will be just the largest xi. Therefore, varying the value of a gives you a "soft", or a continues way to go from regular averaging to selecting the max. The functional form of this weighted average should look familiar to you if you already know what a SoftMax regression is.

Why Gaussian radial basis function maps the examples into an infinite-dimensional space?

I've just run through the Wikipedia page about SVMs, and this line caught my eyes:
"If the kernel used is a Gaussian radial basis function, the corresponding feature space is a Hilbert space of infinite dimensions." http://en.wikipedia.org/wiki/Support_vector_machine#Nonlinear_classification
In my understanding, if I apply Gaussian kernel in SVM, the resulting feature space will be m-dimensional (where m is the number of training samples), as you choose your landmarks to be your training examples, and you're measuring the "similarity" between a specific example and all the examples with the Gaussian kernel. As a consequence, for a single example you'll have as many similarity values as training examples. These are going to be the new feature vectors which are going to m-dimensional vectors, and not infinite dimensionals.
Could somebody explain to me what do I miss?
Thanks,
Daniel
The dual formulation of the linear SVM depends only on scalar products of all training vectors. Scalar product essentially measures similarity of two vectors. We can then generalize it by replacing with any other "well-behaved" (it should be positive-definite, it's needed to preserve convexity, as well as enables Mercer's theorem) similarity measure. And RBF is just one of them.
If you take a look at the formula here you'll see that RBF is basically a scalar product in a certain infinitely dimensional space
Thus RBF is kind of a union of polynomial kernels of all possible degrees.
The other answers are correct but don't really tell the right story here. Importantly, you are correct. If you have m distinct training points then the gaussian radial basis kernel makes the SVM operate in an m dimensional space. We say that the radial basis kernel maps to a space of infinite dimension because you can make m as large as you want and the space it operates in keeps growing without bound.
However, other kernels, like the polynomial kernel do not have this property of the dimensionality scaling with the number of training samples. For example, if you have 1000 2D training samples and you use a polynomial kernel of <x,y>^2 then the SVM will operate in a 3 dimensional space, not a 1000 dimensional space.
The short answer is that this business about infinite dimensional spaces is only part of the theoretical justification, and of no practical importance. You never actually touch an infinite-dimensional space in any sense. It's part of the proof that the radial basis function works.
Basically, SVMs are proved to work the way they do by relying on properties of dot products over vector spaces. You can't just swap in the radial basis function and expect it necessarily works. To prove that it does, however, you show that the radial basis function is actually like a dot product over a different vector space, and it's as if we're doing regular SVMs in a transformed space, which works. And it happens that infinite dimensioal-ness is OK, and that the radial basis function does correspond to a dot product in such a space. So you can say SVMs still work when you use this particular kernel.

Resources