So I'm developing an Ionic app that uses the phone camera to detect circles on fabric, like the picture below:
Where the max size is a 3x3 grid and there are 4 different colors (lightblue, darkblue, lightgreen and darkgreen). Basically, I've broken the problem down into 3 steps:
Get the center of each circle.
Get the color at the center of each circle
Using the positions of each circle's center, create a representation of the pattern as a 2d array
My problem is figuring out the best way to achieve step 1. I've looked into the Hough Transform and I can't find very good resources for Javascript. If there is an easier or better way than using the Hough transform I would be very grateful to know.
You can use Image Segmentation with Watershed Algorithm which described in
here
In this type of image, you can do:
Color thresholding in order to find each pattern
(optional) opening + closing in order to clean a little bit your image if the thresholding result is not perfect.
Connected component labeling (see the Union-Find algorithm) in order to separate each component.
Then you have all the patterns, so you can easily find the centers and colors.
Related
I am am currently working on a method to extract colors from a macbeth color chart. So far I have had moderate success by using thresholding and then extracting square contours. Sadly through, colors that are too close to each other either mix together or do no get detected.
The code in it's current form:
<script src="https://pastebin.com/embed_js/mNi0TcDE"></script>
The image before any processing
After thresholding, you can see that there are areas where lines are incomplete due to too small differences in color. I have tried to use dilation to midigate these issues and it does work to a degree. But not enough to detect all squares.
Image after thresholding
This results in the following contours being detected
Detected contours
I have tried using:
Hough lines, sadly no lines here detected.
Centroids of contours, but I was unable to find a way to use centroids to draw lines and detect the centers of the missing contours
Corner detection, corners where found. But I was unsuccessful in finding a real way to put them to use.
Can anyone point me in the right direction?
Thaks in advance,
Emil
Hum, if your goal is color calibration, you really do not need to detect the squares in their entirety. A 10x10 sample near the center of the image of each physical square will give you 100 color samples, which is plenty for any reasonable calibration procedure.
There are many ways to approach this problem. If you can guarantee that the chart will cover the image, you could even just do k-means clustering, since you know in advance the exact number of clusters you seek.
If you insist on using geometry, I'd do template matching in scale+angle space - it is reasonable to assume that the chart will be mostly facing, and only slightly rotated, so you only need to estimate scale and a small rotation about the axis orthogonal to the chart.
I hame some image with plane which have perspective transform.
I need to detect center of each white rhombus or rhombus itself.
Here is examples:
As I unserstand the problem can be solved by simple template matching if we rectify image, but I need to do it automatically.
Is there any functions in OpenCV suitable for this task? Any other ideas?
Here are two quick tests I just did without correcting the perspective issue.
Pure mathematical morphology:
Extract the red channel
Big white top-hat in order to detect all the bright areas, but without the big bright reflexion.
Small white top-hat in order to detect only the thin lines between the rhombus
Result of 2 minus result of 3. The lines between the rhombus are then thinner or even disappeared.
Opening to clean the final result.
Here are two results: Image1 and Image2. The main issue is that the rhombus do not have the same sizes (different magnification and perspective), which can be problematic with the mathematical morphology.
So here is an other solution using the Hough transform:
You start with the resulting image of the step 3 from the previous algorithm.
You apply a hough transform.
Here are the results: Hough1 and Hough2. Then you have to filter between lines touching a rhombus or not, but you can use my first algorithm for that. Even if all the rhombus are not detected by the first algorithm, most will be and it will be enough to detect the lines touching the Rhombus. Then the line intersections will be the centroids that your are looking for.
did somebody tried to find a pizzamarker like this one with "only" OpenCV so far?
I was trying to detect this one but couldn't get good results so far. I do not know where this marker is in picture (no ROI is possible), the marker will be somewhere in the room (different ligthning effects) and not faceing orthoonal towards us. What I want - the corners and later the orientation of this marker extracted with the corners but first of all only the 5Corners. (up, down, left, right, center)
I was trying so far: threshold, noiseclearing, find contours but nothing realy helped for a good result. Chessboards or square markers are normaly found because of their (parallel) lines- i guess this can't help me here...
What is an easy way to find those markers?
How would you start?
Use other colorformat like HSV?
A step-by-step idea or tutorial would be realy helpfull. Cause i couldn't find tuts at the net. Maybe this marker isn't called pizzamarker -> does somebody knows the real name?
thx for help
First - thank you for all of your help.
It seems that several methods are usefull. Some more or less time expansive.
For me it was the easiest with a template matching but not with the same marker.
I used only a small part of it...
this can be found 5 times(4 times negative and one positive) in this new marker:
now I use only the 4 most negatives Points and the most positive and got my 5 points that I finaly wanted. To make this more sure, I check if they are close to each other and will do a cornerSubPix().
If you need something which can operate in real-time I'd go down the edge detection route and look for intersecting lines like these guys did. Seems fast and robust to lighting changes.
Read up on the Hough Line Transform in openCV to get started.
Addendum:
Black to White is the strongest edge you can have. If you create a gradient image and use the strongest edges found in the scene (via histogram or other) you will be able to limit the detection to only the black/white edges. Look for intersections. This should give you a small number of center points to apply Hough ellipse detection (or alternate) to. You could rotate in a template as a further check if you wish.
BTW.. OpenCV has Edge Detection, Hough transform and FitEllipse if you do go down this route.
actually this 'pizza' pattern is one of the building blocks of the haar featured used in the
Viola–Jones object detection framework.
So what I would do is compute the summed area table, or integral image using cv::integral(img) and then run exhaustive search for this pattern, on various scales (size dependant).
In each window you are using only 9 points (top-left, top-center, ..., bottom left).
You can train and use cvHaarDetectObjects to detect the marker using VJ.
Probably not the fastest method but it should work.
You can find more info on object detection methods using OpenCV here: http://opencv.willowgarage.com/documentation/object_detection.html
I am looking for an efficient way to detect the small boxes around the numbers (see images)?
I already tried to use hough transformation with no success. Any ideas? I need some hints! I am using opencv...
For inspiration, you can have a look at the
Matlab video sudoku solver demo and explanation
Sudoku Grab, an Iphone App, whose author explains the computer vision part on his blog
Alternatively, if you are always hunting for the same grid you could deploy something like this:
Make a perfect artificial template of the grid and detect or save all coordinates from all corners.
In the target image, do the same thing, for example with Harris points. Be creative, you might also be able to use the distinct triangles that can be found in your images.
Using the coordinates from the template and the found harris points, determine the affine transformation x = Ax' between the template and the target image. That transformation can then be used to map the template grid onto the target image. At the very least this will give you some prior information to help guide further segmentation.
The gist of the idea and examples of the estimation of affine matrix A can be found on the site of Zissermans book Multiple View Geometry in Computer Vision and Peter Kovesi
I'd start by trying to detect the rectangular boundary of the overall sheet, then applying a perspective transform to make it truly rectangular. Crop that portion of the image out. If possible, then try to make the alternating white and grey sub-rectangles have an equal background brightness - maybe try adaptive histogram equalization.
Then the Hough transform might perform better. Alternatively, you could then take an approach that's broadly similar to this demonstration by Robert Bemis on MATLAB Central (it's analysing a DNA microarray image rather than Lotto cards, but it's essentially finding bounding boxes of items arranged in a grid). At a high level, the approach is to calculate the autocorrelation along columns and rows of pixels to detect the periodicity of the items in the grid, and use that to impose a bounding box on each item.
Sorry the above advice is mostly MATLAB-based; I'm afraid I'm not an opencv user, but hopefully it will give you some ideas at least.
Having a match-3 game screenshot (for example http://www.gameplay3.com/images/games/jewel-quest-ii-01S.jpg), what would be the correct way to find the bound box for the grid (table with tiles)? The board doesn't have to be a perfect rectangle (as can be seen in the screenshot), but each cell is completely square.
I've tried several games, and found that there are some per-game image transformations that can be done to enhance the tiles inside the grid (for example in this game it's enough to take the V channel out of HSV color space). Then I can enlarge the tiles so that they overlap, find the largest contour of the image and get the bound box from it.
The problem with above approach is that every game (or even level inside the same game) may need a different transformation to get hold of the tiles. So the question is - is there a standard way to enhance either tiles inside the grid or grid's lines (I've tried finding lines with Hough transform, but, although the grid seems pretty visible to the eye, Hough doesn't find it)?
Also, what if the screenshot is obtained using the phone camera instead of taking a screenshot of a desktop? From my experience, captured images have less defined colors (which depends on lighting), and also can be distorted a little, as there is no way to hold the phone exactly in front of the screen.
I would go with the following approach for a screenshot:
Find corners in the image using for example a canny like edge detector.
Perform a hough line transform. This should work quite nicely on the edge image.
If you have some information about size of the tiles you could eliminate false positive lines using some sort of spatial model of the grid (eg. lines only having a small angle to x/y axis of the image and/or distance/angle of tile borders.
Identifiy tile borders under the found hough lines by looking for edges found by canny under/next to the lines.
Which implementation of the hough transform did you use? How did you preprocess the image?
Another approach would be to use some sort of machine learning approach. As you are working in OpenCV you could use either a Haar like feature detector. An example for face detection using Haar like features can be found here:
OpenCV Haar Face Detector example
Another machine learning approach would be to follow a Histogram of Oriented Gradients (Hog) approach in combination with a Support Vector Machine (SVM). An example is located here:
HOG example
You can find general information about HoG detection at:
Hog detection