Passing a seq<string option> from F# to RProvider - f#

I asked this question last week regarding seq<float option> values passed to RProvider. I had hoped that I'd be able to apply the accepted answer there to other option types in F#. Unfortunately, NaN is only applicable to numeric in R.
How can I convert a None string in F# to NA and pass to R?

You can use Option.toObj.
For example:
let l1 = [ Some "x"; None; Some "y"]
let l2 = l1 |> List.map (Option.toObj)
// val l2 : string list = ["x"; null; "y"]
And you can use Option.toNullable for number values, but it would convert to type Nullable<float>, and None would also be null. For some reason this doesn't work the other way round:
let l3 = l2 |> List.map (Option.ofObj)
// val l3 : string option list = [Some "x"; null; Some "y"]
I don't know if that's intended or a bug.
Edit : Option.ofObj does work properly. F# Interactive displays None as null when it is in a list for some reason.

The answer to your previous question is still applicable. You can use null to indicate a missing string value:
let optString = ["x"; null; "y"]
let testData5 =
namedParams [
"optString", optString;]
|> R.data_frame
Gives me:
val testData5 : SymbolicExpression =
optString
1 x
2 <NA>
3 y
You can convert the option string to just string list:
let optString2 = [Some "x"; None; Some "y"]
optString2
|> List.map (fun x -> match x with
| Some x -> x
| None -> null)

Related

How to compare two lists in F#

I am new to f#, so I need to do this for homework. I have been struggling now for several hours, so a hint would be appreciated it: Write a function that has the type 'a list * 'a list-> bool, where a comparison between the elements of the same index is implemented. For example: [1;2;3] and [1;2;3] are equal and [1;2;3] and [1;2;4] not.
Thank you for providing the useful context that this is a homework! Since this is the case, I will try to give some hint but not a fully complete working solution.
First of all, it's worth noting that you can just compare lists using = in F# and this does exactly what you need. Assuming we have some sample lists:
let l1 = [1;2;3]
let l2 = [1;2;3]
let l3 = [1;2;4]
You can do the following to compare lists:
l1 = l2 // Returns 'true'
l1 = l3 // Returns 'false'
This is probably not going to teach you much about writing F#, so I assume what you need is to write your own recursive function. This is a good exercise! There are two key tricks. First, you need a recursive function that looks at the start of the list and then calls itself recursively to process the rest of the list. Second, you'll want to use pattern matching on the two lists given as arguments. The basic structure of the function will be:
let rec compare xl yl =
match xl, yl with
| [], [] ->
| x::xs, y::ys ->
| _ ->
Now you need to fill in the blank parts:
If both lists are empty. Are they equal or not?
If both lists are non-empty and start with x and y, followed by xs and ys.
Otherwise - one list is empty, the other non-empty.
let a = [1;2;3]
let b = [1;2;3]
let c = [1;2;5]
let rec compare xl yl =
match xl, yl with
| [], [] -> true
| x::xs, y::ys -> x = y && compare xs ys
| _ -> false
// compiling the code and using interactive the output is:
val a : int list = [1; 2; 3]
val b : int list = [1; 2; 3]
val c : int list = [1; 2; 5]
>
val compare : xl:'a list -> yl:'a list -> bool when 'a : equality
> compare a b;;
val it : bool = true
> compare a c;;
val it : bool = false

F# : How to test the equality of sequence/list elements?

I would like to test whether all of elements in a list/sequence equals something
For example,a sequence of integers.
I would like to test if ALL element of the sequence equals to the same number.
My solution so far looks like imperative programming solution.
let test seq =
if Seq.forall(fun num -> num =1) then 1
elif Seq.forall(fun num-> num = 2) then 2
else None
Your solution is fine! Checking that all elements of a sequence have some value is not something you can nicely express using pattern matching - you have to use when clause, but that's doing exactly the same thing as your code (but with longer syntax). In cases like this, there is absolutely nothing wrong with using if.
You can extend pattern matching by definining custom active patterns, which gives you a nice option here. This is fairly advanced F#, but you can define a custom pattern ForAll n that succeeds when the input is a sequence containing just n values:
let (|ForAll|_|) n seq =
if Seq.forall (fun num -> num = n) seq then Some() else None
Note that success is represented as Some and failure as None. Now, you can solve your problem very nicely using pattern matching:
let test = function
| ForAll 1 -> Some 1
| ForAll 2 -> Some 2
| _ -> None
This looks quite nice, but it's relying on more advanced features - I would do this if this is something that you need in more than one place. If I needed this just in one place, I'd go with ordinary if.
You can rewrite it using pattern matching with a guard clause:
let testList = [2;2;2]
let isOne x = x = 1
let isTwo x = x = 2
let forAll = function
| list when list |> List.forall isOne -> Some 1
| list when list |> List.forall isTwo -> Some 2
| _ -> None
let res = forAll testList //Some 2
Instead of the function you could use partial application on the equals operator.
> let yes = [1;1;1];;
val yes : int list = [1; 1; 1]
> let no = [1;2;3];;
val no : int list = [1; 2; 3]
> yes |> List.forall ((=) 1);;
val it : bool = true
> no |> List.forall ((=) 1);;
val it : bool = false
Maybe this looks more functional? And I think you should return Some 1 in your code, otherwise you'd get type errors since Option and int are not the same type...
If you want to check if all elements are equal (not just if they equal some constant), you could do this:
> [1;2] |> List.pairwise |> List.forall (fun (a,b) -> a = b)
;;
val it : bool = false
> [1;1;1] |> List.pairwise |> List.forall (fun (a,b) -> a = b)
;;
val it : bool = true
There you split your list into tuples and checks if the tuples are equal. This means transitively that all elements are equal.

How to use Map.TryFind?

When I run the code below I get an error. I am using Map.TryFind and its not working. In console, I get a red line under familyinc.TryFind(tract) and the error below.
let data =
seq { for (state,work) in statecsv do
let (family,income) = familyinc.TryFind(state)
let fam =
match fam with
| Some x -> x
| None -> "Not a Record"
let inc =
match inc with
| Some x -> x
| None -> "Not an income"
yield (state,work,inc,fam)
}
The ERROR:
error FS0001: This expression was expected to have type
''a * 'b'
but here has type
'(string * decimal) option'
Answer to the edited question: The problem is the same as in the previous one, you are pattern matching on a tuple while you are binding an option. You should do something like this instead:
// Bind the whole option
let result = familyinc.TryFind(state)
// Pattern match on it
match result with
| Some (family , income) -> yield (state,work,family,income)
| None -> yield (state,work,"Not a Record","Not an Income")
Of course you could also do match familyinc.TryFind(tract) with, there's no need to bind to variable here.
The issue is you are pattern matching on the result of Map.TryFind() as if it would return a tuple but it actually returns an option as it may fail to find they key you are looking for.
In all FP languages understanding option types and pattern matching is essential. In fact both of these features make FP a superior alternative to OO languages. Using option types you can avoid getting null exceptions, using pattern matching you can deconstruct values. In this case you can filter out non-existing keys, and convert the option result into normal values:
//create test dictionary
let map1 = [("a",1); ("b",2);("c",3)] |> Map.ofList
//list of keys, "d" doesn't exist in the dictionary/map
let keys = ["a";"b";"d"]
keys
|> List.map (fun x -> map1.[x])
//System.Collections.Generic.KeyNotFoundException: The given key was not present in the dictionary.
keys
|> List.map (fun x -> map1.TryFind(x))
//You get back a string option list, with the last element missing as the key "d" doesn't exist
//val it : int option list = [Some 1; Some 2; None]
//Method A: filter out the none existing items
keys
|> List.map (fun x -> map1.TryFind(x))
|> List.choose id //choose will get rid of the Nones and return the actual value, not the option. id is the identity function.
//Method B: replace the None with some default value, and also get rid of the option
//Let's say you replace each non existing value with 999
keys
|> List.map (fun x -> map1.TryFind(x))
|> List.map (Option.defaultValue 999)
//val it : int list = [1; 2; 999]
//In general if necessary you can always pattern match
let myOption1 = Some "A"
let myOption2 = None
match myOption1 with
| Some x -> x //try matching whatever is in myOption1 and returns the x portion of Some x, in this case "A"
| None -> "No value"
//val it : string = "A"
match myOption2 with
| Some x -> x
| None -> "No value" //since the value of myOption2 is None, Some x won't match, None will match, and return "No value"
//val it : string = "No value"

Return value in F# - incomplete construct

I've trying to learn F#. I'm a complete beginner, so this might be a walkover for you guys :)
I have the following function:
let removeEven l =
let n = List.length l;
let list_ = [];
let seq_ = seq { for x in 1..n do if x % 2 <> 0 then yield List.nth l (x-1)}
for x in seq_ do
let list_ = list_ # [x];
list_;
It takes a list, and return a new list containing all the numbers, which is placed at an odd index in the original list, so removeEven [x1;x2;x3] = [x1;x3]
However, I get my already favourite error-message: Incomplete construct at or before this point in expression...
If I add a print to the end of the line, instead of list_:
...
print_any list_;
the problem is fixed. But I do not want to print the list, I want to return it!
What causes this? Why can't I return my list?
To answer your question first, the compiler complains because there is a problem inside the for loop. In F#, let serves to declare values (that are immutable and cannot be changed later in the program). It isn't a statement as in C# - let can be only used as part of another expression. For example:
let n = 10
n + n
Actually means that you want the n symbol to refer to the value 10 in the expression n + n. The problem with your code is that you're using let without any expression (probably because you want to use mutable variables):
for x in seq_ do
let list_ = list_ # [x] // This isn't assignment!
list_
The problematic line is an incomplete expression - using let in this way isn't allowed, because it doesn't contain any expression (the list_ value will not be accessed from any code). You can use mutable variable to correct your code:
let mutable list_ = [] // declared as 'mutable'
let seq_ = seq { for x in 1..n do if x % 2 <> 0 then yield List.nth l (x-1)}
for x in seq_ do
list_ <- list_ # [x] // assignment using '<-'
Now, this should work, but it isn't really functional, because you're using imperative mutation. Moreover, appending elements using # is really inefficient thing to do in functional languages. So, if you want to make your code functional, you'll probably need to use different approach. Both of the other answers show a great approach, although I prefer the example by Joel, because indexing into a list (in the solution by Chaos) also isn't very functional (there is no pointer arithmetic, so it will be also slower).
Probably the most classical functional solution would be to use the List.fold function, which aggregates all elements of the list into a single result, walking from the left to the right:
[1;2;3;4;5]
|> List.fold (fun (flag, res) el ->
if flag then (not flag, el::res) else (not flag, res)) (true, [])
|> snd |> List.rev
Here, the state used during the aggregation is a Boolean flag specifying whether to include the next element (during each step, we flip the flag by returning not flag). The second element is the list aggregated so far (we add element by el::res only when the flag is set. After fold returns, we use snd to get the second element of the tuple (the aggregated list) and reverse it using List.rev, because it was collected in the reversed order (this is more efficient than appending to the end using res#[el]).
Edit: If I understand your requirements correctly, here's a version of your function done functional rather than imperative style, that removes elements with odd indexes.
let removeEven list =
list
|> Seq.mapi (fun i x -> (i, x))
|> Seq.filter (fun (i, x) -> i % 2 = 0)
|> Seq.map snd
|> List.ofSeq
> removeEven ['a'; 'b'; 'c'; 'd'];;
val it : char list = ['a'; 'c']
I think this is what you are looking for.
let removeEven list =
let maxIndex = (List.length list) - 1;
seq { for i in 0..2..maxIndex -> list.[i] }
|> Seq.toList
Tests
val removeEven : 'a list -> 'a list
> removeEven [1;2;3;4;5;6];;
val it : int list = [1; 3; 5]
> removeEven [1;2;3;4;5];;
val it : int list = [1; 3; 5]
> removeEven [1;2;3;4];;
val it : int list = [1; 3]
> removeEven [1;2;3];;
val it : int list = [1; 3]
> removeEven [1;2];;
val it : int list = [1]
> removeEven [1];;
val it : int list = [1]
You can try a pattern-matching approach. I haven't used F# in a while and I can't test things right now, but it would be something like this:
let rec curse sofar ls =
match ls with
| even :: odd :: tl -> curse (even :: sofar) tl
| even :: [] -> curse (even :: sofar) []
| [] -> List.rev sofar
curse [] [ 1; 2; 3; 4; 5 ]
This recursively picks off the even elements. I think. I would probably use Joel Mueller's approach though. I don't remember if there is an index-based filter function, but that would probably be the ideal to use, or to make if it doesn't exist in the libraries.
But in general lists aren't really meant as index-type things. That's what arrays are for. If you consider what kind of algorithm would require a list having its even elements removed, maybe it's possible that in the steps prior to this requirement, the elements can be paired up in tuples, like this:
[ (1,2); (3,4) ]
That would make it trivial to get the even-"indexed" elements out:
thelist |> List.map fst // take first element from each tuple
There's a variety of options if the input list isn't guaranteed to have an even number of elements.
Yet another alternative, which (by my reckoning) is slightly slower than Joel's, but it's shorter :)
let removeEven list =
list
|> Seq.mapi (fun i x -> (i, x))
|> Seq.choose (fun (i,x) -> if i % 2 = 0 then Some(x) else None)
|> List.ofSeq

Handy F# snippets [closed]

As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
There are already two questions about F#/functional snippets.
However what I'm looking for here are useful snippets, little 'helper' functions that are reusable. Or obscure but nifty patterns that you can never quite remember.
Something like:
open System.IO
let rec visitor dir filter=
seq { yield! Directory.GetFiles(dir, filter)
for subdir in Directory.GetDirectories(dir) do
yield! visitor subdir filter}
I'd like to make this a kind of handy reference page. As such there will be no right answer, but hopefully lots of good ones.
EDIT Tomas Petricek has created a site specifically for F# snippets http://fssnip.net/.
Perl style regex matching
let (=~) input pattern =
System.Text.RegularExpressions.Regex.IsMatch(input, pattern)
It lets you match text using let test = "monkey" =~ "monk.+" notation.
Infix Operator
I got this from http://sandersn.com/blog//index.php/2009/10/22/infix-function-trick-for-f go to that page for more details.
If you know Haskell, you might find yourself missing infix sugar in F#:
// standard Haskell call has function first, then args just like F#. So obviously
// here there is a function that takes two strings: string -> string -> string
startsWith "kevin" "k"
//Haskell infix operator via backQuotes. Sometimes makes a function read better.
"kevin" `startsWith` "K"
While F# doesn't have a true 'infix' operator, the same thing can be accomplished almost as elegantly via a pipeline and a 'backpipeline' (who knew of such a thing??)
// F# 'infix' trick via pipelines
"kevin" |> startsWith <| "K"
Multi-Line Strings
This is pretty trivial, but it seems to be a feature of F# strings that is not widely known.
let sql = "select a,b,c \
from table \
where a = 1"
This produces:
val sql : string = "select a,b,c from table where a = 1"
When the F# compiler sees a back-slash followed by a carriage return inside a string literal, it will remove everything from the back-slash to the first non-space character on the next line. This allows you to have multi-line string literals that line up, without using a bunch of string concatenation.
Generic memoization, courtesy of the man himself
let memoize f =
let cache = System.Collections.Generic.Dictionary<_,_>(HashIdentity.Structural)
fun x ->
let ok, res = cache.TryGetValue(x)
if ok then res
else let res = f x
cache.[x] <- res
res
Using this, you could do a cached reader like so:
let cachedReader = memoize reader
Simple read-write to text files
These are trivial, but make file access pipeable:
open System.IO
let fileread f = File.ReadAllText(f)
let filewrite f s = File.WriteAllText(f, s)
let filereadlines f = File.ReadAllLines(f)
let filewritelines f ar = File.WriteAllLines(f, ar)
So
let replace f (r:string) (s:string) = s.Replace(f, r)
"C:\\Test.txt" |>
fileread |>
replace "teh" "the" |>
filewrite "C:\\Test.txt"
And combining that with the visitor quoted in the question:
let filereplace find repl path =
path |> fileread |> replace find repl |> filewrite path
let recurseReplace root filter find repl =
visitor root filter |> Seq.iter (filereplace find repl)
Update Slight improvement if you want to be able to read 'locked' files (e.g. csv files which are already open in Excel...):
let safereadall f =
use fs = new FileStream(f, FileMode.Open, FileAccess.Read, FileShare.ReadWrite)
use sr = new StreamReader(fs, System.Text.Encoding.Default)
sr.ReadToEnd()
let split sep (s:string) = System.Text.RegularExpressions.Regex.Split(s, sep)
let fileread f = safereadall f
let filereadlines f = f |> safereadall |> split System.Environment.NewLine
For performance intensive stuff where you need to check for null
let inline isNull o = System.Object.ReferenceEquals(o, null)
if isNull o then ... else ...
Is about 20x faster then
if o = null then ... else ...
Active Patterns, aka "Banana Splits", are a very handy construct that let one match against multiple regular expression patterns. This is much like AWK, but without the high performance of DFA's because the patterns are matched in sequence until one succeeds.
#light
open System
open System.Text.RegularExpressions
let (|Test|_|) pat s =
if (new Regex(pat)).IsMatch(s)
then Some()
else None
let (|Match|_|) pat s =
let opt = RegexOptions.None
let re = new Regex(pat,opt)
let m = re.Match(s)
if m.Success
then Some(m.Groups)
else None
Some examples of use:
let HasIndefiniteArticle = function
| Test "(?: |^)(a|an)(?: |$)" _ -> true
| _ -> false
type Ast =
| IntVal of string * int
| StringVal of string * string
| LineNo of int
| Goto of int
let Parse = function
| Match "^LET\s+([A-Z])\s*=\s*(\d+)$" g ->
IntVal( g.[1].Value, Int32.Parse(g.[2].Value) )
| Match "^LET\s+([A-Z]\$)\s*=\s*(.*)$" g ->
StringVal( g.[1].Value, g.[2].Value )
| Match "^(\d+)\s*:$" g ->
LineNo( Int32.Parse(g.[1].Value) )
| Match "^GOTO \s*(\d+)$" g ->
Goto( Int32.Parse(g.[1].Value) )
| s -> failwithf "Unexpected statement: %s" s
Maybe monad
type maybeBuilder() =
member this.Bind(v, f) =
match v with
| None -> None
| Some(x) -> f x
member this.Delay(f) = f()
member this.Return(v) = Some v
let maybe = maybeBuilder()
Here's a brief intro to monads for the uninitiated.
Option-coalescing operators
I wanted a version of the defaultArg function that had a syntax closer to the C# null-coalescing operator, ??. This lets me get the value from an Option while providing a default value, using a very concise syntax.
/// Option-coalescing operator - this is like the C# ?? operator, but works with
/// the Option type.
/// Warning: Unlike the C# ?? operator, the second parameter will always be
/// evaluated.
/// Example: let foo = someOption |? default
let inline (|?) value defaultValue =
defaultArg value defaultValue
/// Option-coalescing operator with delayed evaluation. The other version of
/// this operator always evaluates the default value expression. If you only
/// want to create the default value when needed, use this operator and pass
/// in a function that creates the default.
/// Example: let foo = someOption |?! (fun () -> new Default())
let inline (|?!) value f =
match value with Some x -> x | None -> f()
'Unitize' a function which doesn't handle units
Using the FloatWithMeasure function http://msdn.microsoft.com/en-us/library/ee806527(VS.100).aspx.
let unitize (f:float -> float) (v:float<'u>) =
LanguagePrimitives.FloatWithMeasure<'u> (f (float v))
Example:
[<Measure>] type m
[<Measure>] type kg
let unitize (f:float -> float) (v:float<'u>) =
LanguagePrimitives.FloatWithMeasure<'u> (f (float v))
//this function doesn't take units
let badinc a = a + 1.
//this one does!
let goodinc v = unitize badinc v
goodinc 3.<m>
goodinc 3.<kg>
OLD version:
let unitize (f:float -> float) (v:float<'u>) =
let unit = box 1. :?> float<'u>
unit * (f (v/unit))
Kudos to kvb
Scale/Ratio function builder
Again, trivial, but handy.
//returns a function which will convert from a1-a2 range to b1-b2 range
let scale (a1:float<'u>, a2:float<'u>) (b1:float<'v>,b2:float<'v>) =
let m = (b2 - b1)/(a2 - a1) //gradient of line (evaluated once only..)
(fun a -> b1 + m * (a - a1))
Example:
[<Measure>] type m
[<Measure>] type px
let screenSize = (0.<px>, 300.<px>)
let displayRange = (100.<m>, 200.<m>)
let scaleToScreen = scale displayRange screenSize
scaleToScreen 120.<m> //-> 60.<px>
Transposing a list (seen on Jomo Fisher's blog)
///Given list of 'rows', returns list of 'columns'
let rec transpose lst =
match lst with
| (_::_)::_ -> List.map List.head lst :: transpose (List.map List.tail lst)
| _ -> []
transpose [[1;2;3];[4;5;6];[7;8;9]] // returns [[1;4;7];[2;5;8];[3;6;9]]
And here is a tail-recursive version which (from my sketchy profiling) is mildly slower, but has the advantage of not throwing a stack overflow when the inner lists are longer than 10000 elements (on my machine):
let transposeTR lst =
let rec inner acc lst =
match lst with
| (_::_)::_ -> inner (List.map List.head lst :: acc) (List.map List.tail lst)
| _ -> List.rev acc
inner [] lst
If I was clever, I'd try and parallelise it with async...
F# Map <-> C# Dictionary
(I know, I know, System.Collections.Generic.Dictionary isn't really a 'C#' dictionary)
C# to F#
(dic :> seq<_>) //cast to seq of KeyValuePair
|> Seq.map (|KeyValue|) //convert KeyValuePairs to tuples
|> Map.ofSeq //convert to Map
(From Brian, here, with improvement proposed by Mauricio in comment below. (|KeyValue|) is an active pattern for matching KeyValuePair - from FSharp.Core - equivalent to (fun kvp -> kvp.Key, kvp.Value))
Interesting alternative
To get all of the immutable goodness, but with the O(1) lookup speed of Dictionary, you can use the dict operator, which returns an immutable IDictionary (see this question).
I currently can't see a way to directly convert a Dictionary using this method, other than
(dic :> seq<_>) //cast to seq of KeyValuePair
|> (fun kvp -> kvp.Key, kvp.Value) //convert KeyValuePairs to tuples
|> dict //convert to immutable IDictionary
F# to C#
let dic = Dictionary()
map |> Map.iter (fun k t -> dic.Add(k, t))
dic
What is weird here is that FSI will report the type as (for example):
val it : Dictionary<string,int> = dict [("a",1);("b",2)]
but if you feed dict [("a",1);("b",2)] back in, FSI reports
IDictionary<string,int> = seq[[a,1] {Key = "a"; Value = 1; } ...
Tree-sort / Flatten a tree into a list
I have the following binary tree:
___ 77 _
/ \
______ 47 __ 99
/ \
21 _ 54
\ / \
43 53 74
/
39
/
32
Which is represented as follows:
type 'a tree =
| Node of 'a tree * 'a * 'a tree
| Nil
let myTree =
Node
(Node
(Node (Nil,21,Node (Node (Node (Nil,32,Nil),39,Nil),43,Nil)),47,
Node (Node (Nil,53,Nil),54,Node (Nil,74,Nil))),77,Node (Nil,99,Nil))
A straightforward method to flatten the tree is:
let rec flatten = function
| Nil -> []
| Node(l, a, r) -> flatten l # a::flatten r
This isn't tail-recursive, and I believe the # operator causes it to be O(n log n) or O(n^2) with unbalanced binary trees. With a little tweaking, I came up with this tail-recursive O(n) version:
let flatten2 t =
let rec loop acc c = function
| Nil -> c acc
| Node(l, a, r) ->
loop acc (fun acc' -> loop (a::acc') c l) r
loop [] (fun x -> x) t
Here's the output in fsi:
> flatten2 myTree;;
val it : int list = [21; 32; 39; 43; 47; 53; 54; 74; 77; 99]
LINQ-to-XML helpers
namespace System.Xml.Linq
// hide warning about op_Explicit
#nowarn "77"
[<AutoOpen>]
module XmlUtils =
/// Converts a string to an XName.
let xn = XName.op_Implicit
/// Converts a string to an XNamespace.
let xmlns = XNamespace.op_Implicit
/// Gets the string value of any XObject subclass that has a Value property.
let inline xstr (x : ^a when ^a :> XObject) =
(^a : (member get_Value : unit -> string) x)
/// Gets a strongly-typed value from any XObject subclass, provided that
/// an explicit conversion to the output type has been defined.
/// (Many explicit conversions are defined on XElement and XAttribute)
/// Example: let value:int = xval foo
let inline xval (x : ^a when ^a :> XObject) : ^b =
((^a or ^b) : (static member op_Explicit : ^a -> ^b) x)
/// Dynamic lookup operator for getting an attribute value from an XElement.
/// Returns a string option, set to None if the attribute was not present.
/// Example: let value = foo?href
/// Example with default: let value = defaultArg foo?Name "<Unknown>"
let (?) (el:XElement) (name:string) =
match el.Attribute(xn name) with
| null -> None
| att -> Some(att.Value)
/// Dynamic operator for setting an attribute on an XElement.
/// Example: foo?href <- "http://www.foo.com/"
let (?<-) (el:XElement) (name:string) (value:obj) =
el.SetAttributeValue(xn name, value)
OK, this has nothing to do with snippets, but I keep forgetting this:
If you are in the interactive window, you hit F7 to jump back to the code window (without deselecting the code which you just ran...)
Going from code window to F# window (and also to open the F# window) is Ctrl Alt F
(unless CodeRush has stolen your bindings...)
Weighted sum of arrays
Calculating a weighted [n-array] sum of a [k-array of n-arrays] of numbers, based on a [k-array] of weights
(Copied from this question, and kvb's answer)
Given these arrays
let weights = [|0.6;0.3;0.1|]
let arrs = [| [|0.0453;0.065345;0.07566;1.562;356.6|] ;
[|0.0873;0.075565;0.07666;1.562222;3.66|] ;
[|0.06753;0.075675;0.04566;1.452;3.4556|] |]
We want a weighted sum (by column), given that both dimensions of the arrays can be variable.
Array.map2 (fun w -> Array.map ((*) w)) weights arrs
|> Array.reduce (Array.map2 (+))
First line: Partial application of the first Array.map2 function to weights yields a new function (Array.map ((*) weight) which is applied (for each weight) to each array in arr.
Second line: Array.reduce is like fold, except it starts on the second value and uses the first as the initial 'state'. In this case each value is a 'line' of our array of arrays. So applying an Array.map2 (+) on the first two lines means that we sum the first two arrays, which leaves us with a new array, which we then (Array.reduce) sum again onto the next (in this case last) array.
Result:
[|0.060123; 0.069444; 0.07296; 1.5510666; 215.40356|]
Performance testing
(Found here and updated for latest release of F#)
open System
open System.Diagnostics
module PerformanceTesting =
let Time func =
let stopwatch = new Stopwatch()
stopwatch.Start()
func()
stopwatch.Stop()
stopwatch.Elapsed.TotalMilliseconds
let GetAverageTime timesToRun func =
Seq.initInfinite (fun _ -> (Time func))
|> Seq.take timesToRun
|> Seq.average
let TimeOperation timesToRun =
GC.Collect()
GetAverageTime timesToRun
let TimeOperations funcsWithName =
let randomizer = new Random(int DateTime.Now.Ticks)
funcsWithName
|> Seq.sortBy (fun _ -> randomizer.Next())
|> Seq.map (fun (name, func) -> name, (TimeOperation 100000 func))
let TimeOperationsAFewTimes funcsWithName =
Seq.initInfinite (fun _ -> (TimeOperations funcsWithName))
|> Seq.take 50
|> Seq.concat
|> Seq.groupBy fst
|> Seq.map (fun (name, individualResults) -> name, (individualResults |> Seq.map snd |> Seq.average))
DataSetExtensions for F#, DataReaders
System.Data.DataSetExtensions.dll adds the ability to treat a DataTable as an IEnumerable<DataRow> as well as unboxing the values of individual cells in a way that gracefully handles DBNull by supporting System.Nullable. For example, in C# we can get the value of an integer column that contains nulls, and specify that DBNull should default to zero with a very concise syntax:
var total = myDataTable.AsEnumerable()
.Select(row => row.Field<int?>("MyColumn") ?? 0)
.Sum();
There are two areas where DataSetExtensions are lacking, however. First, it doesn't support IDataReader and second, it doesn't support the F# option type. The following code does both - it allows an IDataReader to be treated as a seq<IDataRecord>, and it can unbox values from either a reader or a dataset, with support for F# options or System.Nullable. Combined with the option-coalescing operator in another answer, this allows for code such as the following when working with a DataReader:
let total =
myReader.AsSeq
|> Seq.map (fun row -> row.Field<int option>("MyColumn") |? 0)
|> Seq.sum
Perhaps a more idiomatic F# way of ignoring database nulls would be...
let total =
myReader.AsSeq
|> Seq.choose (fun row -> row.Field<int option>("MyColumn"))
|> Seq.sum
Further, the extension methods defined below are usable from both F# and from C#/VB.
open System
open System.Data
open System.Reflection
open System.Runtime.CompilerServices
open Microsoft.FSharp.Collections
/// Ported from System.Data.DatasetExtensions.dll to add support for the Option type.
[<AbstractClass; Sealed>]
type private UnboxT<'a> private () =
// This class generates a converter function based on the desired output type,
// and then re-uses the converter function forever. Because the class itself is generic,
// different output types get different cached converter functions.
static let referenceField (value:obj) =
if value = null || DBNull.Value.Equals(value) then
Unchecked.defaultof<'a>
else
unbox value
static let valueField (value:obj) =
if value = null || DBNull.Value.Equals(value) then
raise <| InvalidCastException("Null cannot be converted to " + typeof<'a>.Name)
else
unbox value
static let makeConverter (target:Type) methodName =
Delegate.CreateDelegate(typeof<Converter<obj,'a>>,
typeof<UnboxT<'a>>
.GetMethod(methodName, BindingFlags.NonPublic ||| BindingFlags.Static)
.MakeGenericMethod([| target.GetGenericArguments().[0] |]))
|> unbox<Converter<obj,'a>>
|> FSharpFunc.FromConverter
static let unboxFn =
let theType = typeof<'a>
if theType.IsGenericType && not theType.IsGenericTypeDefinition then
let genericType = theType.GetGenericTypeDefinition()
if typedefof<Nullable<_>> = genericType then
makeConverter theType "NullableField"
elif typedefof<option<_>> = genericType then
makeConverter theType "OptionField"
else
invalidOp "The only generic types supported are Option<T> and Nullable<T>."
elif theType.IsValueType then
valueField
else
referenceField
static member private NullableField<'b when 'b : struct and 'b :> ValueType and 'b:(new:unit -> 'b)> (value:obj) =
if value = null || DBNull.Value.Equals(value) then
Nullable<_>()
else
Nullable<_>(unbox<'b> value)
static member private OptionField<'b> (value:obj) =
if value = null || DBNull.Value.Equals(value) then
None
else
Some(unbox<'b> value)
static member inline Unbox =
unboxFn
/// F# data-related extension methods.
[<AutoOpen>]
module FsDataEx =
type System.Data.IDataReader with
/// Exposes a reader's current result set as seq<IDataRecord>.
/// Reader is closed when sequence is fully enumerated.
member this.AsSeq =
seq { use reader = this
while reader.Read() do yield reader :> IDataRecord }
/// Exposes all result sets in a reader as seq<seq<IDataRecord>>.
/// Reader is closed when sequence is fully enumerated.
member this.AsMultiSeq =
let rowSeq (reader:IDataReader) =
seq { while reader.Read() do yield reader :> IDataRecord }
seq {
use reader = this
yield rowSeq reader
while reader.NextResult() do
yield rowSeq reader
}
/// Populates a new DataSet with the contents of the reader. Closes the reader after completion.
member this.ToDataSet () =
use reader = this
let dataSet = new DataSet(RemotingFormat=SerializationFormat.Binary, EnforceConstraints=false)
dataSet.Load(reader, LoadOption.OverwriteChanges, [| "" |])
dataSet
type System.Data.IDataRecord with
/// Gets a value from the record by name.
/// DBNull and null are returned as the default value for the type.
/// Supports both nullable and option types.
member this.Field<'a> (fieldName:string) =
this.[fieldName] |> UnboxT<'a>.Unbox
/// Gets a value from the record by column index.
/// DBNull and null are returned as the default value for the type.
/// Supports both nullable and option types.
member this.Field<'a> (ordinal:int) =
this.GetValue(ordinal) |> UnboxT<'a>.Unbox
type System.Data.DataRow with
/// Identical to the Field method from DatasetExtensions, but supports the F# Option type.
member this.Field2<'a> (columnName:string) =
this.[columnName] |> UnboxT<'a>.Unbox
/// Identical to the Field method from DatasetExtensions, but supports the F# Option type.
member this.Field2<'a> (columnIndex:int) =
this.[columnIndex] |> UnboxT<'a>.Unbox
/// Identical to the Field method from DatasetExtensions, but supports the F# Option type.
member this.Field2<'a> (column:DataColumn) =
this.[column] |> UnboxT<'a>.Unbox
/// Identical to the Field method from DatasetExtensions, but supports the F# Option type.
member this.Field2<'a> (columnName:string, version:DataRowVersion) =
this.[columnName, version] |> UnboxT<'a>.Unbox
/// Identical to the Field method from DatasetExtensions, but supports the F# Option type.
member this.Field2<'a> (columnIndex:int, version:DataRowVersion) =
this.[columnIndex, version] |> UnboxT<'a>.Unbox
/// Identical to the Field method from DatasetExtensions, but supports the F# Option type.
member this.Field2<'a> (column:DataColumn, version:DataRowVersion) =
this.[column, version] |> UnboxT<'a>.Unbox
/// C# data-related extension methods.
[<Extension; AbstractClass; Sealed>]
type CsDataEx private () =
/// Populates a new DataSet with the contents of the reader. Closes the reader after completion.
[<Extension>]
static member ToDataSet(this:IDataReader) =
this.ToDataSet()
/// Exposes a reader's current result set as IEnumerable{IDataRecord}.
/// Reader is closed when sequence is fully enumerated.
[<Extension>]
static member AsEnumerable(this:IDataReader) =
this.AsSeq
/// Exposes all result sets in a reader as IEnumerable{IEnumerable{IDataRecord}}.
/// Reader is closed when sequence is fully enumerated.
[<Extension>]
static member AsMultipleEnumerable(this:IDataReader) =
this.AsMultiSeq
/// Gets a value from the record by name.
/// DBNull and null are returned as the default value for the type.
/// Supports both nullable and option types.
[<Extension>]
static member Field<'T> (this:IDataRecord, fieldName:string) =
this.Field<'T>(fieldName)
/// Gets a value from the record by column index.
/// DBNull and null are returned as the default value for the type.
/// Supports both nullable and option types.
[<Extension>]
static member Field<'T> (this:IDataRecord, ordinal:int) =
this.Field<'T>(ordinal)
Handling arguments in a command line application:
//We assume that the actual meat is already defined in function
// DoStuff (string -> string -> string -> unit)
let defaultOutOption = "N"
let defaultUsageOption = "Y"
let usage =
"Scans a folder for and outputs results.\n" +
"Usage:\n\t MyApplication.exe FolderPath [IncludeSubfolders (Y/N) : default=" +
defaultUsageOption + "] [OutputToFile (Y/N): default=" + defaultOutOption + "]"
let HandlArgs arr =
match arr with
| [|d;u;o|] -> DoStuff d u o
| [|d;u|] -> DoStuff d u defaultOutOption
| [|d|] -> DoStuff d defaultUsageOption defaultOutOption
| _ ->
printf "%s" usage
Console.ReadLine() |> ignore
[<EntryPoint>]
let main (args : string array) =
args |> HandlArgs
0
(I had a vague memory of this technique being inspired by Robert Pickering, but can't find a reference now)
A handy cache function that keeps up to max (key,reader(key)) in a dictionary and use a SortedList to track the MRU keys
let Cache (reader: 'key -> 'value) max =
let cache = new Dictionary<'key,LinkedListNode<'key * 'value>>()
let keys = new LinkedList<'key * 'value>()
fun (key : 'key) -> (
let found, value = cache.TryGetValue key
match found with
|true ->
keys.Remove value
keys.AddFirst value |> ignore
(snd value.Value)
|false ->
let newValue = key,reader key
let node = keys.AddFirst newValue
cache.[key] <- node
if (keys.Count > max) then
let lastNode = keys.Last
cache.Remove (fst lastNode.Value) |> ignore
keys.RemoveLast() |> ignore
(snd newValue))
Creating XElements
Nothing amazing, but I keep getting caught out by the implicit conversion of XNames:
#r "System.Xml.Linq.dll"
open System.Xml.Linq
//No! ("type string not compatible with XName")
//let el = new XElement("MyElement", "text")
//better
let xn s = XName.op_Implicit s
let el = new XElement(xn "MyElement", "text")
//or even
let xEl s o = new XElement(xn s, o)
let el = xEl "MyElement" "text"
Pairwise and pairs
I always expect Seq.pairwise to give me [(1,2);(3;4)] and not [(1,2);(2,3);(3,4)]. Given that neither exist in List, and that I needed both, here's the code for future reference. I think they're tail recursive.
//converts to 'windowed tuples' ([1;2;3;4;5] -> [(1,2);(2,3);(3,4);(4,5)])
let pairwise lst =
let rec loop prev rem acc =
match rem with
| hd::tl -> loop hd tl ((prev,hd)::acc)
| _ -> List.rev acc
loop (List.head lst) (List.tail lst) []
//converts to 'paged tuples' ([1;2;3;4;5;6] -> [(1,2);(3,4);(5,6)])
let pairs lst =
let rec loop rem acc =
match rem with
| l::r::tl -> loop tl ((l,r)::acc)
| l::[] -> failwith "odd-numbered list"
| _ -> List.rev acc
loop lst []
Naive CSV reader (i.e., won't handle anything nasty)
(Using filereadlines and List.transpose from other answers here)
///Given a file path, returns a List of row lists
let ReadCSV =
filereadlines
>> Array.map ( fun line -> line.Split([|',';';'|]) |> List.ofArray )
>> Array.toList
///takes list of col ids and list of rows,
/// returns array of columns (in requested order)
let GetColumns cols rows =
//Create filter
let pick cols (row:list<'a>) = List.map (fun i -> row.[i]) cols
rows
|> transpose //change list of rows to list of columns
|> pick cols //pick out the columns we want
|> Array.ofList //an array output is easier to index for user
Example
"C:\MySampleCSV"
|> ReadCSV
|> List.tail //skip header line
|> GetColumns [0;3;1] //reorder columns as well, if needs be.
Date Range
simple but useful list of dates between fromDate and toDate
let getDateRange fromDate toDate =
let rec dates (fromDate:System.DateTime) (toDate:System.DateTime) =
seq {
if fromDate <= toDate then
yield fromDate
yield! dates (fromDate.AddDays(1.0)) toDate
}
dates fromDate toDate
|> List.ofSeq
toggle code to sql
More trivial than most on this list, but handy nonetheless:
I'm always taking sql in and out of code to move it to a sql environment during development. Example:
let sql = "select a,b,c "
+ "from table "
+ "where a = 1"
needs to be 'stripped' to:
select a,b,c
from table
where a = 1
keeping the formatting. It's a pain to strip out the code symbols for the sql editor, then put them back again by hand when I've got the sql worked out. These two functions toggle the sql back and forth from code to stripped:
// reads the file with the code quoted sql, strips code symbols, dumps to FSI
let stripForSql fileName =
File.ReadAllText(fileName)
|> (fun s -> Regex.Replace(s, "\+(\s*)\"", ""))
|> (fun s -> s.Replace("\"", ""))
|> (fun s -> Regex.Replace(s, ";$", "")) // end of line semicolons
|> (fun s -> Regex.Replace(s, "//.+", "")) // get rid of any comments
|> (fun s -> printfn "%s" s)
then when you are ready to put it back into your code source file:
let prepFromSql fileName =
File.ReadAllText(fileName)
|> (fun s -> Regex.Replace(s, #"\r\n", " \"\r\n+\"")) // matches newline
|> (fun s -> Regex.Replace(s, #"\A", " \""))
|> (fun s -> Regex.Replace(s, #"\z", " \""))
|> (fun s -> printfn "%s" s)
I'd love to get rid of the input file but can't even begin to grok how to make that happen. anyone?
edit:
I figured out how to eliminate the requirement of a file for these functions by adding a windows forms dialog input/output. Too much code to show, but for those who would like to do such a thing, that's how I solved it.
Pascal's Triangle (hey, someone might find it useful)
So we want to create a something like this:
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
Easy enough:
let rec next = function
| [] -> []
| x::y::xs -> (x + y)::next (y::xs)
| x::xs -> x::next xs
let pascal n =
seq { 1 .. n }
|> List.scan (fun acc _ -> next (0::acc) ) [1]
The next function returns a new list where each item[i] = item[i] + item[i + 1].
Here's the output in fsi:
> pascal 10 |> Seq.iter (printfn "%A");;
[1]
[1; 1]
[1; 2; 1]
[1; 3; 3; 1]
[1; 4; 6; 4; 1]
[1; 5; 10; 10; 5; 1]
[1; 6; 15; 20; 15; 6; 1]
[1; 7; 21; 35; 35; 21; 7; 1]
[1; 8; 28; 56; 70; 56; 28; 8; 1]
[1; 9; 36; 84; 126; 126; 84; 36; 9; 1]
[1; 10; 45; 120; 210; 252; 210; 120; 45; 10; 1]
For the adventurous, here's a tail-recursive version:
let rec next2 cont = function
| [] -> cont []
| x::y::xs -> next2 (fun l -> cont <| (x + y)::l ) <| y::xs
| x::xs -> next2 (fun l -> cont <| x::l ) <| xs
let pascal2 n =
set { 1 .. n }
|> Seq.scan (fun acc _ -> next2 id <| 0::acc)) [1]
Flatten a List
if you have something like this:
let listList = [[1;2;3;];[4;5;6]]
and want to 'flatten' it down to a singe list so the result is like this:
[1;2;3;4;5;6]
it can be done thusly:
let flatten (l: 'a list list) =
seq {
yield List.head (List.head l)
for a in l do yield! (Seq.skip 1 a)
}
|> List.ofSeq
List comprehensions for float
This [23.0 .. 1.0 .. 40.0] was marked as deprecated a few versions backed.
But apparently, this works:
let dl = 9.5 / 11.
let min = 21.5 + dl
let max = 40.5 - dl
let a = [ for z in min .. dl .. max -> z ]
let b = a.Length
(BTW, there's a floating point gotcha in there. Discovered at fssnip - the other place for F# snippets)
Parallel map
let pmap f s =
seq { for a in s -> async { return f s } }
|> Async.Parallel
|> Async.Run

Resources