Creating a tuple pointfree - f#

Can the function createTuple below be expressed pointfree?
let createTuple = fun v -> (v, v*2)
createTuple 2 |> printfn "%A" // (2,4)

The F# library does not provide many functions for writing code in point-free style (mainly because it is not particularly idiomatic way of writing F#), so you cannot write your createTuple function using just what is available in the core library.
If you really wanted to do this, you could define a couple of helper combinators for working with tuples:
/// Duplicates any given value & returns a tuple with two copies of it
let dup a = a, a
/// Transforms the first element using given function
let mapFst f (a, b) = (f a, b)
/// Transforms the second element (not needed here, but adding for symmetry)
let mapSnd f (a, b) = (a, f b)
With these, you could implement your function in a point-free way:
let createTuple = dup >> mapSnd ((*) 2)
This does the same thing as your function. I think it is significantly harder to decipher what is going on here and I would never actually write that code, but that's another issue :-).

Related

Composing 2 (or n) ('a -> unit) functions with same arg type

Is there some form of built-in / term I don't know that kinda-but-its-different 'composes' two 'a -> unit functions to yield a single one; e.g.:
let project event =
event |> logDirections
event |> stashDirections
let dispatch (batch:EncodedEventBatch) =
batch.chooseOfUnion () |> Seq.iter project
might become:
let project = logDirections FOLLOWEDBY stashDirections
let dispatch (batch:EncodedEventBatch) =
batch.chooseOfUnion () |> Seq.iter project
and then:
let dispatch (batch:EncodedEventBatch) =
batch.chooseOfUnion () |> Seq.iter (logDirections FOLLOWEDBY stashDirections)
I guess one might compare it to tee (as alluded to in FSFFAP's Railway Oriented Programming series).
(it needs to pass the same arg to both and I'm seeking to run them sequentially without any exception handling trickery concerns etc.)
(I know I can do let project fs arg = fs |> Seq.iter (fun f -> f arg) but am wondering if there is something built-in and/or some form of composition lib I'm not aware of)
The apply function from Klark is the most straightforward way to solve the problem.
If you want to dig deeper and understand the concept more generally, then you can say that you are lifting the sequential composition operation from working on values to work on functions.
First of all, the ; construct in F# can be viewed as sequential composition operator. Sadly, you cannot quite use it as one, e.g. (;) (because it is special and lazy in the second argument) but we can define our own operator instead to explore the idea:
let ($) a b = a; b
So, printfn "hi" $ 1 is now a sequential composition of a side-effecting operation and some expression that evaluates to 1 and it does the same thing as printfn "hi"; 1.
The next step is to define a lifting operation that turns a binary operator working on values to a binary operator working on functions:
let lift op g h = (fun a -> op (g a) (h a))
Rather than writing e.g. fun x -> foo x + bar x, you can now write lift (+) foo bar. So you have a point-free way of writing the same thing - just using operation that works on functions.
Now you can achieve what you want using the lift function and the sequential composition operator:
let seq2 a b = lift ($) a b
let seq3 a b c = lift ($) (lift ($) a b) c
let seqN l = Seq.reduce (lift ($)) l
The seq2 and seq3 functions compose just two operations, while seqN does the same thing as Klark's apply function.
It should be said that I'm writing this answer not because I think it is useful to implement things in F# in this way, but as you mentioned railway oriented programming and asked for deeper concepts behind this, it is interesting to see how things can be composed in functional languages.
Can you just apply an array of functions to a given data?
E.g. you can define:
let apply (arg:'a) (fs:(('a->unit) seq)) = fs |> Seq.iter (fun f -> f arg)
Then you will be able to do something like this:
apply 1 [(fun x -> printfn "%d" (x + 1)); (fun y -> printfn "%d" (y + 2))]

Is there an existing function to apply a function to each member of a tuple?

I want to apply a function to both members of a homogenous tuple, resulting in another tuple. Following on from my previous question I defined an operator that seemed to make sense to me:
let (||>>) (a,b) f = f a, f b
However, again I feel like this might be a common use case but couldn't find it in the standard library. Does it exist?
I don't think there is any standard library function that does this.
My personal preference would be to avoid too many custom operators (they make code shorter, but they make it harder to read for people who have not seen the definition before). Applying function to both elements of a tuple is logically close to the map operation on lists (which applies a function to all elements of a list), so I would probably define Tuple2.map:
module Tuple2 =
let map f (a, b) = (f a, f b)
Then you can use the function quite nicely with pipelining:
let nums = (1, 2)
nums |> Tuple2.map (fun x -> x + 1)

Is there a library function or operator to create a tuple?

Given a string of digits, I would like to have a sequence of tuples mapping the non-zero characters with their position in the string. Example:
IN: "000140201"
OUT: { (3, '1'); (4, '4'); (6, '2'); (8, '1') }
Solution:
let tuples = source
|> Seq.mapi (fun i -> fun c -> (i, c))
|> Seq.filter (snd >> (<>) '0')
It seems like (fun i -> fun c -> (i, c)) is a lot more typing than it should be for such a simple and presumably common operation. It's easy to declare the necessary function:
let makeTuple a b = (a, b)
let tuples2 = source
|> Seq.mapi makeTuple
|> Seq.filter (snd >> (<>) '0')
But it seems to me that if the library provides the snd function, it should also provide the makeTuple function (and probably with a shorter name), or at least it should be relatively easy to compose. I couldn't find it; am I missing something? I tried to build something with the framework's Tuple.Create, but I couldn't figure out how to get anything other than the single-argument overload.
But it seems to me that if the library provides the snd function, it should also provide the makeTuple function.
F# assumes that you decompose tuples (using fst, snd) much more often than composing them. Functional library design often follows minimal principle. Just provide functions for common use cases, other functions should be easy to define.
I couldn't find it; am I missing something?
No, you aren't. It's the same reason that FSharpPlus has defined tuple2, tuple3, etc. Here are utility functions straight from Operators:
/// Creates a pair
let inline tuple2 a b = a,b
/// Creates a 3-tuple
let inline tuple3 a b c = a,b,c
/// Creates a 4-tuple
let inline tuple4 a b c d = a,b,c,d
/// Creates a 5-tuple
let inline tuple5 a b c d e = a,b,c,d,e
/// Creates a 6-tuple
let inline tuple6 a b c d e f = a,b,c,d,e,f
I tried to build something with the framework's Tuple.Create, but I couldn't figure out how to get anything other than the single-argument overload.
F# compiler hides properties of System.Tuple<'T1, 'T2> to enforce pattern matching idiom on tuples. See Extension methods for F# tuples for more details.
That said, point-free style is not always recommended in F#. If you like point-free, you have to do a bit of heavy lifting yourself.
The #pad's answer is great, just to add my 2 cents: I am using similar operator
let inline (-&-) a b = (a, b)
and it looks very convenient to write let x = a -&- b
Maybe you'll find this operator useful too

Tacit programming style using F#

It's not a practically important issue, but I'd like to see an example of tacit programming in F# where my point-free functions can have multiple arguments (not in form of a list or tuple).
And secondly, how such functions can manipulate a complex data structure. I'm trying it out in F# Interactive, but have no success yet.
I tried, for instance:
> (fun _ -> (fun _ -> (+))) 333 222 111 555
Is that right way?
And:
> (fun _ -> (fun _ -> (+))) "a" "b" "c" "d";;
val it : string = "cd"
F# doesn't contain some of the basic functions that are available in Haskell (mainly because F# programmers usually prefer the explicit style of programming and use pointfree style only in the most obvious cases, where it doesn't hurt readability).
However you can define a few basic combinators like this:
// turns curried function into non-curried function and back
let curry f (a, b) = f a b
let uncurry f a b = f (a, b)
// applies the function to the first/second element of a tuple
let first f (a, b) = (f a, b)
let second f (a, b) = (a, f b)
Now you can implement the function to add lengths of two strings using combinators as follows:
let addLengths =
uncurry (( (first String.length) >> (second String.length) ) >> (curry (+)))
This constructs two functions that apply String.length to first/second element of a tuple, then composes them and then adds the elements of the tuple using +. The whole thing is wrapped in uncurry, so you get a function of type string -> string -> int.
In F#, the arity of functions is fixed, so you're not going to be able to write both
(op) 1 2
and
(op) 1 2 3 4
for any given operator op. You will need to use a list or other data structure if that's what you want. If you're just trying to avoid named variables, you can always do "1 + 2 + 3 + 4". The most idiomatic way to add a list of numbers in F# is List.sum [1;2;3;4], which also avoids variables.

F# currying efficiency?

I have a function that looks as follows:
let isInSet setElems normalize p =
normalize p |> (Set.ofList setElems).Contains
This function can be used to quickly check whether an element is semantically part of some set; for example, to check if a file path belongs to an html file:
let getLowerExtension p = (Path.GetExtension p).ToLowerInvariant()
let isHtmlPath = isInSet [".htm"; ".html"; ".xhtml"] getLowerExtension
However, when I use a function such as the above, performance is poor since evaluation of the function body as written in "isInSet" seems to be delayed until all parameters are known - in particular, invariant bits such as (Set.ofList setElems).Contains are reevaluated each execution of isHtmlPath.
How can best I maintain F#'s succint, readable nature while still getting the more efficient behavior in which the set construction is preevaluated.
The above is just an example; I'm looking for a general approach that avoids bogging me down in implementation details - where possible I'd like to avoid being distracted by details such as the implementation's execution order since that's usually not important to me and kind of undermines a major selling point of functional programming.
As long as F# doesn't differentiate between pure and impure code, I doubt we'll see optimisations of that kind. You can, however, make the currying explicit.
let isInSet setElems =
let set = Set.ofList setElems
fun normalize p -> normalize p |> set.Contains
isHtmlSet will now call isInSet only once to obtain the closure, at the same time executing ofList.
The answer from Kha shows how to optimize the code manually by using closures directly. If this is a frequent pattern that you need to use often, it is also possible to define a higher-order function that constructs the efficient code from two functions - the first one that does pre-processing of some arguments and a second one which does the actual processing once it gets the remaining arguments.
The code would look like this:
let preProcess finit frun preInput =
let preRes = finit preInput
fun input -> frun preRes input
let f : string list -> ((string -> string) * string) -> bool =
preProcess
Set.ofList // Pre-processing of the first argument
(fun elemsSet (normalize, p) -> // Implements the actual work to be
normalize p |> elemsSet.Contains) // .. done once we get the last argument
It is a question whether this is more elegant though...
Another (crazy) idea is that you could use computation expressions for this. The definition of computation builder that allows you to do this is very non-standard (it is not something that people usually do with them and it isn't in any way related to monads or any other theory). However, it should be possible to write this:
type CurryBuilder() =
member x.Bind((), f:'a -> 'b) = f
member x.Return(a) = a
let curry = new CurryBuilder()
In the curry computation, you can use let! to denote that you want to take the next argument of the function (after evaluating the preceeding code):
let f : string list -> (string -> string) -> string -> bool = curry {
let! elems = ()
let elemsSet = Set.ofList elems
printf "elements converted"
let! normalize = ()
let! p = ()
printf "calling"
return normalize p |> elemsSet.Contains }
let ff = f [ "a"; "b"; "c" ] (fun s -> s.ToLower())
// Prints 'elements converted' here
ff "C"
ff "D"
// Prints 'calling' two times
Here are some resources with more information about computation expressions:
The usual way of using computation expressions is described in free sample chapter of my book: Chapter 12: Sequence Expressions and Alternative Workflows (PDF)
The example above uses some specifics of the translation which is in full detailes described in the F# specification (PDF)
#Kha's answer is spot on. F# cannot rewrite
// effects of g only after both x and y are passed
let f x y =
let xStuff = g x
h xStuff y
into
// effects of g once after x passed, returning new closure waiting on y
let f x =
let xStuff = g x
fun y -> h xStuff y
unless it knows that g has no effects, and in the .NET Framework today, it's usually impossible to reason about the effects of 99% of all expressions. Which means the programmer is still responsible for explicitly coding evaluation order as above.
Currying does not hurt. Currying sometimes introduces closures as well. They are usually efficient too.
refer to this question I asked before. You can use inline to boost performance if necessary.
However, your performance problem in the example is mainly due to your code:
normalize p |> (Set.ofList setElems).Contains
here you need to perform Set.ofList setElems even you curry it. It costs O(n log n) time.
You need to change the type of setElems to F# Set, not List now. Btw, for small set, using lists is faster than sets even for querying.

Resources