Detect common features in multidimensional data - machine-learning

I am designing a system for anomaly detection.
There are multiple approaches for building such system. I choose to implement one facet of such system by detection of features shared by the majority of samples. I acknowledge the possible insufficiencies of such method but for my specific use-case: (1) It suffices to know that a new sample contains (or lacks) features shared by the majority of past data to make a quick decision.(2) I'm interested in the insights such method will offer to the data.
So, here is the problem:
Consider a large data set with M data points, where each data point may include any number of {key:value} features. I choose to model a training dataset by grouping all the features observed in the data (the set of all unique keys) and setting it as the model's feature space. I define each sample by setting its values for existing keys and None for values in features it does not include.
Given this training data set I want to determine which features reoccur in the data; and for such reoccurring features, do they mostly share a single value.
My question:
A simple solution would be to count everything - for each of the N features calculate the distribution of values. However as M and N are potentially large, I wonder if there is a more compact way to represent the data or more sophisticated method to make claims about features' frequencies.
Am I reinventing an existing wheel? If there's an online approach for accomplishing such task it would be even better.

If I understand correctly your question,
you need to go over all the data anyway, so why not using hash?
Actually two hash tables:
Inner hash table for the distribution of feature values.
Outer hash table for feature existence.
In this way, the size of the inner hash table will indicate how is the feature common in your data, and the actual values will indicate how they differ one another. Another thing to notice is that you go over your data only once, and the time complexity for every operation (almost) on hash tables (if you allocate enough space from the beginning) is O(1).
Hope it helps

Related

How to identify relevant columns in very wide tables using AI and Machine Learning?

I have a complex data model consisting of around hundred tables containing business data. Some tables are very wide, up to four hundred columns. Columns can have various data types - integers, decimals, text, dates etc. I'm looking for a way to identify relevant / important information stored in these tables.
I fully understand that business knowledge is essential to correctly process a data model. What I'm looking for are some strategies to pre-process tables and identify columns that should be taken to later stage where analysts will actually look into it. For example, I could use data profiling and statistics to find and exclude columns that don't have any data at all. Or maybe all records have the same value. This way I could potentially eliminate 30% of fields. However, I'm interested in exploring how AI and Machine Learning techniques could be used to identify important columns, hoping I could identify around 80% of relevant data. I'm aware, that relevant information will depend on the questions I want to ask. But even then, I hope I could narrow the columns to simplify the manual assesment taking place in the next stage.
Could anyone provide some guidance on how to use AI and Machine Learning to identify relevant columns in such wide tables? What strategies and techniques can be used to pre-process tables and identify columns that should be taken to the next stage?
Any help or guidance would be greatly appreciated. Thank you.
F.
The most common approach I've seen to evaluate the analytical utility of columns is the correlation method. This would tell you if there is a relationship (positive or negative) among specific column pairs. In my experience you'll be able to more easily build analysis outputs when columns are correlated - although, these analyses may not always be the most accurate.
However, before you even do that, like you indicate, you would probably need to narrow down your list of columns using much simpler methods. For example, you could surely eliminate a whole bunch of columns based on datatype and basic count statistics.
Less common analytic data types (ids, blobs, binary, etc) can probably be excluded first, followed by running simple COUNT(Distinct(ColName)), and Count(*) where ColName is null . This will help to eliminating UniqueIDs, Keys, and other similar data types. If all the rows are distinct, this would not be a good field for analysis. Same process for NULLs, if the percentage of nulls is greater than some threshold then you can eliminate those columns as well.
In order to automate it depending on your database, you could create a fairly simple stored procedure or function that loops through all the tables and columns and does a data type, count_distinct and a null percentage analysis on each field.
Once you've narrowed down list of columns, you can consider a .corr() function to run the analysis against all the remaining columns in something like a Python script.
If you wanted to keep everything in the database, Postgres also supports a corr() aggregate function, but you'll only be able to run this on 2 columns at a time, like this:
SELECT corr(column1,column2) FROM table;
so you'll need to build a procedure that evaluates multiple columns at once.
Thought about this tech challenges for some time. In general it’s AI solvable problem since there are easy features to extract such as unique values, clustering, distribution, etc.
And we want to bake this ability in https://columns.ai, obviously we haven’t gotten there yet, the first step we have done though is to collect all columns stats upon a data connection, identify columns that have similar range of unique values and generate a bunch of query templates for users to explore its dataset.
If interested, please take a look, as we keep advancing this part, it will become closer to an AI model to find relevant columns. Cheers!

How to pre process a class data (with a large number of unique values) before feeding it to machine learning model?

Let's say I have a large data from an online gaming platform (like steam) which has 'date, user_id, number_of_hours_played, no_of_games' and I have to write a model to predict how many hours a user will play in future for a given date. Now, user_id has a large number of unique values (in millions). I know for class data we can use one hot encoding, but not sure what to do when I have millions of unique classes. Also, suggest if we can use any other method to preprocess the data.
Using directly the user id in the model is not a good idea, since that would result like you said into a large number of features, but also in overfitting since you would get one id per line (If I understood correctly your data). It would also make your model useless in case of a new user id and you would have to retrain your model each time you have a new user.
What I would recommand in the first place is to drop this variable and try to build a model with only the other variables.
Another Idea that you could try is to perform a clustering on the users you have based on other features, and then pass the cluster as a feature instead of the user id, but I don't know if this is a good idea since I don't know the kind of data you have.
Also, you are talking about making a prediction on a given date. The data you described doesn't suggest that but if you have the number of hours per multiple dates, this is closer to a time series prediction problem, which is different from a 'classic' regression problem.

Does a data warehouse need to satisfy 2NF or another normal form?

I'm investigating data warehouses. And I have an issue about star schemas.
It's in
Oracle® OLAP Application Developer's Guide
10g Release 1 (10.1)
3.2.1 Dimension Table: TIME_DIM
https://docs.oracle.com/cd/B13789_01/olap.101/b10333/global.htm#CHDCGABE
To represent the hierarchy MONTH -> QUARTER -> YEAR, we need some keys such as: YEAR_ID, QUARTER_ID. But there are some things that I do not understand:
1) Why do we need field YEAR_DSC & QUARTER_DSC? I think that we can look up these values from YEAR & QUARTER TABLE. And it breaks 2NF.
2) What is the normal form that a schema in data warehouse needs to satisfy? (1NF, 2NF, 3NF, or any.)
NFs (normal forms) don't matter for data warehouse base tables.
We normalize to reduce certain kinds of redundancy so that when we update a database we don't have to say the same thing in multiple places and so that we can't accidentally erroneously not say the same thing where it would need to be said in multiple places. That is not a problem in query results because we are not updating them. The same is true for a data warehouse's base tables. (Which are also just queries on its original database's base tables.)
Data warehouses are usually optimized for reading speed, and that usually means some denormalization compared to the original database to avoid recomputation at the expense of space. (Notice though that sometimes rereading something bigger can be slower than reading smaller parts and recomputing the big thing.) We probably don't want to drop normalized tables when moving to a data warehouse, because they answer simple queries and we don't want to slow down by recomputing them. Other than those tradeoffs, there's no reason not to denormalize. Some particular warehouse design methods might have their own rules about what parts should be denormalized what amounts.
(Whatever our original database design NF is chosen to be, we should always first normalize to 5NF then consciously denormalize. We don't need to normalize or know constraints to update or query a database.)
Read some textbook basics on why we normalize & why we use data warehouses.

Popular Items suggestion - Time Sensitive Data - Data Mining

I am a newbee in the field of data mining. I am working on very interesting Data Minign problem. Data description is as follows:
Data is time sensitive. Item attributes are dependent on time factor as well as its class label. I am grouping weekly data as one instance of training or test record. Each week, some of the item attributes may change along with its Popularity(i.e. Class label).
Some sample data as below:
IsBestPicture,MovieID,YearOfRelease,WeekYear,IsBestDirector,IsBestActor,IsBestAc‌​tress,NumberOfNominations,NumberOfAwards,..,Label
-------------------------------------------------
0_1,60000161,2000,1,9-00,0,0,0,0,0,0,0
0_1,60004480,2001,22,19-02,1,0,0,11,3,0,0
0_1,60000161,2000,5,13-00,0,0,0,0,0,0,1
0_1,60000161,2000,6,14-00,0,0,0,0,0,0,0
0_1,60000161,2000,11,19-00,0,0,0,0,0,0,1
My research advisor suggested to use Naive Bayes algorithm which can adapt such dynamic data that is changing with time.
I am using data from 2000-2004 as Training an 2005 as Testing. If i include Week-Year attribute in my items data set, then it will cause 0 probability in Naive Bayes. Is it ok to omit this attribute from my data set after organizing my data in chronological order?
Moreover, how to adapt my model as i read new test cases ? as the new test cases might cause change in Class label ?
Can you provide a little more insight into your methods? For instance, are you using R, SPSS, Python, SQL Server 2008R2, or RapidMiner 5.2? And if you can include a very small (3-4 row segment) of some of your data, that would help people figure out how to tackle this.
One immediate approach to get an idea of what you are looking at would be to do a Random Forest/Decision Tree and K-Means clustering in order to determine common seperation points in the data. Have you begun by a quick glance at the data's histograms, averages, and outliers?

What spatial indexing algorithm should I use?

I want to implement some king of spatial indexing data structure for my MKAnnotations.
Currently it's horribly slow when I try to filter them based on distance criteria ( 3-4k of locations, currently extremely slow with a simple double for ... ).
I'd like to create clusters of MKAnnotations, to decide if it is close to another. Also, these locations are in a somewhat (creation) order and a "previous"/"next" functionality would be needed to "jump" between (this is not a must).
I've read about kd-tree and r-tree structures and they both seem to meet the fast distance/neighbor obtaining option for filtering/clustering, but I'm not sure which is the best for me or if there are other options too.
What algorithm/data structure should I use ?
Update: I store these locations in a Core Data database, they represent a path. When the map is opened they are fetched into an array and then I just use that array for distance calculations and annotation creation.
When the user moves/zooms the map, I loop through them and decide what needs to be changed on map, so it is kinda static the whole stuff. As I understood, if I'd be using a tree, I could store the locations there and when a zoom/move happens I just search through it and obtain the ones in the new region. Is this true ?
Even in the dynamic case, when I can add new locations to this array, it would be a single insertion and it's happening rarely.
It depends a lot on what your usage patterns are (how my writes, for example, in-memory or on-disk) and how your data looks like (that is how it is distributed).
R-trees are good because they are balanced, and allow updating. The R*-tree in my experience is clearly better than the other variants because of the split strategy it has. The benefit is that it produces more square pages than the other strategies, so that for many queries you will need to scan fewer pages.
kd-trees are good if you are in-memory and static. Updating them is very bad, you will need to rebuild the index quite often.
And if your data does not change very often, bulk-loading for the R-tree works very well. You can do Sort-Tile-Recursive bulk loading, which essentially requires (partially) sorting your data on X and Y alternatingly, so it takes a low O(n log n) to build the tree; very similar to bulk-loading an kd-tree, except that you multi-split instead of binary splitting. This is very popular.
Furthermore, you can keep track of the number of objects in each page. When displaying things on a map, you may want to stop early when a page would display too small on the screen (i.e. smaller than a marker). At this point, you would not scan that page, but only take the number of objects and display that as a clustered marker until the user zooms in.
For 2D data, with a limited value domain, do not overlook the simple things. Quadtrees can work really well, too! Simplicity can make it a lot easier to optimize things. Or a classic grid approach. If your users tend to spread their annotations in an area (and not put them all into one place), you can just compute integer x,y grid coordinates, and then hash them and make a list for each grid cell.
I am no iOS developer, but I looked over the docs and found this:
MKMapView.annotationsInMapRect:
Returns the annotation objects located in the specified map rectangle.
(NSSet *)annotationsInMapRect:(MKMapRect)mapRect
Parameters
mapRect: The portion of the map that you want to search for annotations.
Return Value
The set of annotation objects located in mapRect.
Discussion
This method offers a fast way to retrieve the annotation objects in a particular portion of the map. This method is much faster than doing a linear search of the objects in the annotations property yourself.
This suggests that the NKMapView already organizes annotations in a spatial index structure. Would this method meet your needs?
If not, I would look for existing open source implementations of any 2D spatial indexing structure and pick the one with best documentation, cleanest interfaces, etc. rather than worrying about efficiency. If you need to write the code form scratch, I think a quadtree would be the easiest to implement. On the other hand, the Wikipedia article on R-tree seems more specifically targeted towards mapping than the K-D Tree or Quadtree.

Resources