Alerting through time series data in ELK - time-series

We are looking at ELK to do some alerting. is there a way to dump a time series data created through build in functions in ELK to dump it back to ELK to let us write alerts around it. For example:
There are ways to create a time series graph through Kibana by using Moving Average Aggregation or Holt-Winters double exponential smoothing. ELK also supports a Prediction model.
What we want to do is when the Holt-winter output is less than X percent of the prediction we raise an alarm.
But for that I need both the data points (Holt-winter and Predictive) back into ELK or some other database to calculate whether an alarm should be raised.
How do we push these two data sets which are derivative of original data back into ELK or a database to raise alert

You can always write two derived data sets to different indices (one for each data set). And raise alerts based on the derived data sets.
To raise alerts, you can apply some external windowed streaming techniques; you may also want to take a look at elastic's "watcher" product.

Related

How long Prometheus timeseries last without and update

If I send a gauge to Prometheus then the payload has a timestamp and a value like:
metric_name {label="value"} 2.0 16239938546837
If I query it on Prometheus I can see a continous line. Without sending a payload for the same metric the line stops. Sending the same metric after some minutes I get another continous line, but it is not connected with the old line.
Is this fixed in Prometheus how long a timeseries last without getting an update?
I think the first answer by Marc is in a different context.
Any timeseries in prometheus goes stale in 5m by default if the collection stops - https://www.robustperception.io/staleness-and-promql. In other words, the line stops on graph (or grafana).
So if you resume the metrics collection again within 5 minutes, then it will connect the line by default. But if there is no collection for more than 5 minutes then it will show a disconnect on the graph. You can tweak that on Grafana to ignore drops but that not ideal in some cases as you do want to see when the collection stopped instead of giving the false impression that there was continuous collection. Alternatively, you can avoid the disconnect using some functions like avg_over_time(metric_name[10m]) as needed.
There is two questions here :
1. How long does prometheus keeps the data ?
This depends on the configuration you have for your storage. By default, on local storage, prometheus have a retention of 15days. You can find out more in the documentation. You can also change this value with this option : --storage.tsdb.retention.time
2. When will I have a "hole" in my graph ?
The line you see on a graph is made by joining each point from each scrape. Those scrape are done regularly based on the scrape_interval value you have in your scrape_config. So basically, if you have no data during one scrape, then you'll have a hole.
So there is no definitive answer, this depends essentially on your scrape_interval.
Note that if you're using a function that evaluate metrics for a certain amount of time, then missing one scrape will not alter your graph. For example, using a rate[5m] will not alter your graph if you scrape every 1m (as you'll have 4 other samples to do the rate).

Can Dask computational graphs keep intermediate data so re-compute is not necessary?

I am very impressed with Dask and I am trying to determine if it is the right tool for my problem. I am building a project for interactive data exploration where users can interactively change parameters of a figure. Sometimes these changes requires re-computing the entire pipeline to make the graph (e.g. "show data from a different time interval"), but sometimes not. For instance, "change the smoothing parameter" should not require the system to reload the raw unsmoothed data, because the underlying data is the same, only the processing changes. The system should instead use the existing raw data that has already been loaded. I would like my system to be able to keep around the intermediate data objects and intelligently determine what tasks in the graph need to be re-run based on what parameters of the data visualization have been changed. It looks like the caching system in Dask is close to what I need, but was designed with a bit of a different use-case in mind. I see there is a persist method, but I'm not sure if that would work either. Is there an easy way to accomplish this in Dask, or is there another project that would be more appropriate?
"change the smoothing parameter" should not require the system to reload the raw unsmoothed data
Two options:
The builtin functools.lru_cache will cache every unique input. The check on memory is with the maxsize parameter, which controls how many input/output pairs are stored.
Using persist in the right places will compute that object as mentioned at https://distributed.dask.org/en/latest/manage-computation.html#client-persist. It will not require re-running computation to get the object in later computation; functionally, it's the same as lru_cache.
For example, this code will read from disk twice:
>>> import dask.dataframe as dd
>>> df = dd.read_csv(...)
>>> # df = df.persist() # uncommenting this line → only read from disk once
>>> df[df.x > 0].mean().compute()
24.9
>>> df[df.y > 0].mean().compute()
0.1
Uncommented the line will mean this code only reads from disk once because the task graph for the CSV is computed and the value is stored in memory. For your application is sounds like I would use persist intelligently: https://docs.dask.org/en/latest/best-practices.html#persist-when-you-can
What if two smoothing parameters want to be visualized? In that case, I'd avoid calling compute repeatedly: https://docs.dask.org/en/latest/best-practices.html#avoid-calling-compute-repeatedly
lower, upper = client.compute(df.x.min(), df.x.max())
This will share the task graph for min and max so unnecessary computation is not performed.
I would like my system to be able to keep around the intermediate data objects and intelligently determine what tasks in the graph need to be re-run based on what parameters of the data visualization have been changed.
Dask Distributed has a smart caching ability: https://docs.dask.org/en/latest/caching.html#automatic-opportunistic-caching. Part of the documentation says
Another approach is to watch all intermediate computations, and guess which ones might be valuable to keep for the future. Dask has an opportunistic caching mechanism that stores intermediate tasks that show the following characteristics:
Expensive to compute
Cheap to store
Frequently used
I think this is what you're looking for; it'll store values depending on those attributes.

Store machine status on Graphite time-series to later extract KPIs

having a machine which sends (not regularly) its status values 0, 1, 2, we're storing it in Graphite. Now the status means:
0 - stopped
1 - working
2 - stopped by anomaly
The requested KPIs to extract are the classical ones: how much time on status 0 or 1 or 2 in a day or a week? Before reinventing the wheel, we're looking at the best way to compute those PKIs and if in Graphite (or possible other time-series solution) there are already function which deal with summing the time where the data point value is just a condition. Clearly the time intervals to sum are not stored, it's the time elapsed between a data point and the next one.
Or should the data pre-processed to compute the time intervals and then store three data sets like: status.working, status.stopped, status.alarm and for each store when the specific "event" started and how much it lasted?
There are other KPIs, for example the number of alarms in a day. Receiving two status data points in a row both indicating status "2" is actually a single alarm condition and must count as 1.
So, is there a best way to store such data without pre-processing it? It sounds to be a common pattern but (shame on us?) we have not found this topic well explored.
Thanks.
Graphite has a number of functions that could help you here. One that stands out is the summarize() function in which you can pass an aggregation method (in this case sum) and a duration in minutes/hours/days/weeks/etc), take a look here
isNonNull is another useful function: it can be used to determine the existence of a datapoint regardless of the value.
When you say that the machie reports a value 0 to indicate it has stopped - does it actually send that value or does it report nothing? This is an important detail and will have some bearing on the end result of your solution.

How to define Alerts with exception in InfluxDB/Kapacitor

I'm trying to figure out the best or a reasonable approach to defining alerts in InfluxDB. For example, I might use the CPU batch tickscript that comes with telegraf. This could be setup as a global monitor/alert for all hosts being monitored by telegraf.
What is the approach when you want to deviate from the above setup for a host, ie instead of X% for a specific server we want to alert on Y%?
I'm happy that a distinct tickscript could be created for the custom values but how do I go about excluding the host from the original 'global' one?
This is a simple scenario but this needs to meet the needs of 10,000 hosts of which there will be 100s of exceptions and this will also encompass 10s/100s of global alert definitions.
I'm struggling to see how you could use the platform as the primary source of monitoring/alerting.
As said in the comments, you can use the sideload node to achieve that.
Say you want to ensure that your InfluxDB servers are not overloaded. You may want to allow 100 measurements by default. Only on one server, which happens to get a massive number of datapoints, you want to limit it to 10 (a value which is exceeded by the _internal database easily, but good for our example).
Given the following excerpt from a tick script
var data = stream
|from()
.database(db)
.retentionPolicy(rp)
.measurement(measurement)
.groupBy(groupBy)
.where(whereFilter)
|eval(lambda: "numMeasurements")
.as('value')
var customized = data
|sideload()
.source('file:///etc/kapacitor/customizations/demo/')
.order('hosts/host-{{.hostname}}.yaml')
.field('maxNumMeasurements',100)
|log()
var trigger = customized
|alert()
.crit(lambda: "value" > "maxNumMeasurements")
and the name of the server with the exception being influxdb and the file /etc/kapacitor/customizations/demo/hosts/host-influxdb.yaml looking as follows
maxNumMeasurements: 10
A critical alert will be triggered if value and hence numMeasurements will exceed 10 AND the hostname tag equals influxdb OR if value exceeds 100.
There is an example in the documentation handling scheduled downtimes using sideload
Furthermore, I have created an example available on github using docker-compose
Note that there is a caveat with the example: The alert flaps because of a second database dynamically generated. But it should be sufficient to show how to approach the problem.
What is the cost of using sideload nodes in terms of performance and computation if you have over 10 thousand servers?
Managing alerts manually directly in Chronograph/Kapacitor is not feasible for big number of custom alerts.
At AMMP Technologies we need to manage alerts per database, customer, customer_objects. The number can go into the 1000s. We've opted for a custom solution where keep a standard set of template tickscripts (not to be confused with Kapacitor templates), and we provide an interface to the user where only expose relevant variables. After that a service (written in python) combines the values for those variables with a tickscript and using the Kapacitor API deploys (updates, or deletes) the task on the Kapacitor server. This is then automated so that data for new customers/objects is combined with the templates and automatically deployed to Kapacitor.
You obviously need to design your tasks to be specific enough so that they don't overlap and generic enough so that it's not too much work to create tasks for every little thing.

Real-time pipeline feedback loop

I have a dataset with potentially corrupted/malicious data. The data is timestamped. I'm rating the data with a heuristic function. After a period of time I know that all new data items coming with some IDs needs to be discarded and they represent a significant portion of data (up to 40%).
Right now I have two batch pipelines:
First one just runs the rating over the data.
The second one first filters out the corrupted data and runs the analysis.
I would like to switch from batch mode (say, running every day) into an online processing mode (hope to get a delay < 10 minutes).
The second pipeline uses a global window which makes processing easy. When the corrupted data key is detected, all other records are simply discarded (also using the discarded keys from previous days as a pre-filter is easy). Additionally it makes it easier to make decisions about the output data as during the processing all historic data for a given key is available.
The main question is: can I create a loop in a Dataflow DAG? Let's say I would like to accumulate quality-rates given to each session window I process and if the rate sum is over X, some a filter function in earlier stage of pipeline should filter out malicious keys.
I know about side input, I don't know if it can change during runtime.
I'm aware that DAG by definition cannot have cycle, but how achieve same result without it?
Idea that comes to my mind is to use side output to mark ID as malicious and make fake unbounded output/input. The output would dump the data to some storage and the input would load it every hour and stream so it can be joined.
Side inputs in the Beam programming model are windowed.
So you were on the right path: it seems reasonable to have a pipeline structured as two parts: 1) computing a detection model for the malicious data, and 2) taking the model as a side input and the data as a main input, and filtering the data according to the model. This second part of the pipeline will get the model for the matching window, which seems to be exactly what you want.
In fact, this is one of the main examples in the Millwheel paper (page 2), upon which Dataflow's streaming runner is based.

Resources