Best range of parameters in grid search? - machine-learning

I would like to run a naive implementation of grid search with MLlib but I am a bit confused about choosing the 'best' range of parameters. Apparently, I do not want to waste too much resources for a combination of parameters that will probably not give an improved model. Any suggestions from your experience?
set parameter ranges:
val intercept : List[Boolean] = List(false)
val classes : List[Int] = List(2)
val validate : List[Boolean] = List(true)
val tolerance : List[Double] = List(0.0000001 , 0.000001 , 0.00001 , 0.0001 , 0.001 , 0.01 , 0.1 , 1.0)
val gradient : List[Gradient] = List(new LogisticGradient() , new LeastSquaresGradient() , new HingeGradient())
val corrections : List[Int] = List(5 , 10 , 15)
val iters : List[Int] = List(1 , 10 , 100 , 1000 , 10000)
val regparam : List[Double] = List(0.0 , 0.0001 , 0.001 , 0.01 , 0.1 , 1.0 , 10.0 , 100.0)
val updater : List[Updater] = List(new SimpleUpdater() , new L1Updater() , new SquaredL2Updater())
perform grid search:
val combinations = for (a <- intercept;
b <- classes;
c <- validate;
d <- tolerance;
e <- gradient;
f <- corrections;
g <- iters;
h <- regparam;
i <- updater) yield (a,b,c,d,e,f,g,h,i)
for( ( interceptS , classesS , validateS , toleranceS , gradientS , correctionsS , itersS , regParamS , updaterS ) <- combinations.take(3) ) {
val lr : LogisticRegressionWithLBFGS = new LogisticRegressionWithLBFGS().
setIntercept(addIntercept=interceptS).
setNumClasses(numClasses=classesS).
setValidateData(validateData=validateS)
lr.
optimizer.
setConvergenceTol(tolerance=toleranceS).
setGradient(gradient=gradientS).
setNumCorrections(corrections=correctionsS).
setNumIterations(iters=itersS).
setRegParam(regParam=regParamS).
setUpdater(updater=updaterS)
}

Try randomized Grid search using randomizedsearchcv with a range for the order of magnitude for the hyperparams involved.

Related

Implementing linear regression from scratch in python

I'm trying to Implement linear regression in python using the following gradient decent formulas (Notice that these formulas are after partial derive)
slope
y_intercept
but the code keeps giving me wearied results ,I think (I'm not sure) that the error is in the gradient_descent function
import numpy as np
class LinearRegression:
def __init__(self , x:np.ndarray ,y:np.ndarray):
self.x = x
self.m = len(x)
self.y = y
def calculate_predictions(self ,slope:int , y_intercept:int) -> np.ndarray: # Calculate y hat.
predictions = []
for x in self.x:
predictions.append(slope * x + y_intercept)
return predictions
def calculate_error_cost(self , y_hat:np.ndarray) -> int:
error_valuse = []
for i in range(self.m):
error_valuse.append((y_hat[i] - self.y[i] )** 2)
error = (1/(2*self.m)) * sum(error_valuse)
return error
def gradient_descent(self):
costs = []
# initialization values
temp_w = 0
temp_b = 0
a = 0.001 # Learning rate
while True:
y_hat = self.calculate_predictions(slope=temp_w , y_intercept= temp_b)
sum_w = 0
sum_b = 0
for i in range(len(self.x)):
sum_w += (y_hat[i] - self.y[i] ) * self.x[i]
sum_b += (y_hat[i] - self.y[i] )
w = temp_w - a * ((1/self.m) *sum_w)
b = temp_b - a * ((1/self.m) *sum_b)
temp_w = w
temp_b = b
costs.append(self.calculate_error_cost(y_hat))
try:
if costs[-1] > costs[-2]: # If global minimum reached
return [w,b]
except IndexError:
pass
I Used this dataset:-
https://www.kaggle.com/datasets/tanuprabhu/linear-regression-dataset?resource=download
after downloading it like this:
import pandas
p = pandas.read_csv('linear_regression_dataset.csv')
l = LinearRegression(x= p['X'] , y= p['Y'])
print(l.gradient_descent())
But It's giving me [-568.1905905426412, -2.833321633515304] Which is decently not accurate.
I want to implement the algorithm not using external modules like scikit-learn for learning purposes.
I tested the calculate_error_cost function and it worked as expected and I don't think that there is an error in the calculate_predictions function
One small problem you have is that you are returning the last values of w and b, when you should be returning the second-to-last parameters (because they yield a lower cost). This should not really matter that much... unless your learning rate is too high and you are immediately getting a higher value for the cost function on the second iteration. This I believe is your real problem, judging from the dataset you shared.
The algorithm does work on the dataset, but you need to change the learning rate. I ran it in the example below and it gave the result shown in the image. One caveat is that I added a limit to the iterations to avoid the algorithm from taking too long (and only marginally improving the result).
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
class LinearRegression:
def __init__(self , x:np.ndarray ,y:np.ndarray):
self.x = x
self.m = len(x)
self.y = y
def calculate_predictions(self ,slope:int , y_intercept:int) -> np.ndarray: # Calculate y hat.
predictions = []
for x in self.x:
predictions.append(slope * x + y_intercept)
return predictions
def calculate_error_cost(self , y_hat:np.ndarray) -> int:
error_valuse = []
for i in range(self.m):
error_valuse.append((y_hat[i] - self.y[i] )** 2)
error = (1/(2*self.m)) * sum(error_valuse)
return error
def gradient_descent(self):
costs = []
# initialization values
temp_w = 0
temp_b = 0
iteration = 0
a = 0.00001 # Learning rate
while iteration < 1000:
y_hat = self.calculate_predictions(slope=temp_w , y_intercept= temp_b)
sum_w = 0
sum_b = 0
for i in range(len(self.x)):
sum_w += (y_hat[i] - self.y[i] ) * self.x[i]
sum_b += (y_hat[i] - self.y[i] )
w = temp_w - a * ((1/self.m) *sum_w)
b = temp_b - a * ((1/self.m) *sum_b)
costs.append(self.calculate_error_cost(y_hat))
try:
if costs[-1] > costs[-2]: # If global minimum reached
print(costs)
return [temp_w,temp_b]
except IndexError:
pass
temp_w = w
temp_b = b
iteration += 1
print(iteration)
return [temp_w,temp_b]
p = pd.read_csv('linear_regression_dataset.csv')
x_data = p['X']
y_data = p['Y']
lin_reg = LinearRegression(x_data, y_data)
y_hat = lin_reg.calculate_predictions(*lin_reg.gradient_descent())
fig = plt.figure()
plt.plot(x_data, y_data, 'r.', label='Data')
plt.plot(x_data, y_hat, 'b-', label='Linear Regression')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.show()

Clustered resampling for inner layer of Caret recursive feature elimination

I have data where IDs are contained within clusters.
I would like to perform recursive feature elimination using Caret's rfe function which performs the following procedure:
Clustered resampling for the outer layer (line 2.1) is straightforward, using the index parameter.
However, within each outer resample, I would like to tune tuning parameters using cluster-based cross-validation (inner resampling) (line 2.9). Model tuning in the inner layer is possible by specifying a tuneGrid in rfe and having an appropriate trControl. It is this trControl that I would like to change to allow clustered resampling.
The outer resampling is specified in the rfeControl parameter of rfe.
The inner resampling is specified by trControl of rfe which is passed to train.
The trouble I am having is that I can't seem to specify any inner indices, because after the outer resampling, those indices are no longer valid or no longer present in the outer-resampled data.
I am looking for a way to tell train to take an outer resample (which will be missing a cluster against which to validate), and to tune the model using inner resampling by based on folds of the remaining clusters.
The MWE is as minimal as possible:
library(caret)
library(tidyverse)
library(parallel)
library(doParallel)
range01 <- function(x){(x-min(x))/(max(x)-min(x))}
### Create some random data, 10 features, with some influence over a binomial outcome
set.seed(42)
id <- 1:1000
cluster <- rep(1:10, each = 100)
dat <- data.frame(id, cluster, replicate(10,rnorm(n = 1000, mean = runif(1, 0,100)+cluster, sd = runif(1, 0,20))))
dat <- dat %>% mutate(temp = rowSums(across(X1:X10)), prob = range01(temp), outcome = rbinom(n = nrow(dat), size = 1, prob = prob))
dat$outcome <- as.factor(dat$outcome)
levels(dat$outcome) <- c("control", "case")
dat$outcome <- factor(dat$outcome, levels=rev(levels(dat$outcome)))
### Manual outer folds-based cluster ###
for(i in 1:10) {
assign(paste0("index", i), which(dat$cluster!=i))
}
unit_indices <- list(index1, index2, index3, index4, index5, index6, index7, index8, index9, index10)
### Inner resampling method (THIS IS WHAT I'D LIKE TO CHANGE) ###
cv5 <- trainControl(classProbs = TRUE, method = "cv", number = 5, allowParallel = F) ## Is there a way to have inner cluster-based resampling WITHIN the outer cluster-based resampling?
caret_rfe_functions <- list(summary = twoClassSummary,
fit = function (x, y, first, last, ...) {
train(x, y, ...)
},
pred = caretFuncs$pred,
rank = function(object, x, y) {
vimp <- varImp(object)$importance
vimp <- vimp[order(vimp$Overall,decreasing = TRUE),,drop = FALSE]
vimp$var <- rownames(vimp)
vimp
},
selectSize = function (x, metric = "ROC", tol = 1, maximize = TRUE)
{
if (!maximize) {
best <- min(x[, metric])
perf <- (x[, metric] - best)/best * 100
flag <- perf <= tol
}
else {
best <- max(x[, metric])
perf <- (best - x[, metric])/best * 100
flag <- perf <= tol
}
min(x[flag, "Variables"])
},
selectVar = caretFuncs$selectVar)
caret_rfe_ctrl <- rfeControl(
functions = caret_rfe_functions,
saveDetails = TRUE,
index = unit_indices,
indexOut = NULL,
returnResamp = "all",
allowParallel = T, ### change this if you don't want to / can't go parallel
verbose = TRUE
)
#### Feature selection ####
set.seed(42)
cl <- makePSOCKcluster(10) ### for parallel processing if available
registerDoParallel(cl)
rfe_profile_nnet <- rfe(
form = outcome ~
X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9 + X10,
data = dat,
sizes = seq(2,10,1),
rfeControl = caret_rfe_ctrl,
## pass options to train()
method = "nnet",
preProc = c("center", "scale"),
metric = "ROC",
tuneGrid = expand.grid(size = c(1:5), decay = 5),
trControl = cv5) ### I would like to change this to allow inner cluster-based resampling
stopCluster(cl)
rfe_profile_nnet
plot(rfe_profile_nnet)
Presumably the inner cluster-based resampling would be achieved by specifying a new trainControl containing some dynamic inner index based on the outer resample that is selected at the time:
inner_cluster_tune <- trainControl(classProbs = TRUE,
index = {insert magic here}, ### This is the important bit
returnResamp = "all",
summaryFunction = twoClassSummary,
allowParallel = F) ### especially if the outer resample is parallelised
If you try with the original cluster indices e.g.
inner_cluster_tune <- trainControl(classProbs = TRUE,
index = unit_indices,
returnResamp = "all",
summaryFunction = twoClassSummary,
allowParallel = F)
There are various warnings about missing data in the resamples, and things like 24: In [<-.data.frame(*tmp*, , object$method$center, value = structure(list( ... : provided 81 variables to replace 9 variables.
All help greatly appreciated.
As a postscript question , you can see which parameters were used within your rfe like so:
> rfe_profile_nnet$fit
Neural Network
1000 samples
8 predictor
2 classes: 'case', 'control'
Pre-processing: centered (8), scaled (8)
Resampling: Cross-Validated (5 fold)
Summary of sample sizes: 800, 800, 800, 800, 800
Resampling results across tuning parameters:
size Accuracy Kappa
1 0.616 0.1605071
2 0.616 0.1686937
3 0.620 0.1820503
4 0.618 0.1788491
5 0.618 0.1788063
Tuning parameter 'decay' was held constant at a value of 5
Accuracy was used to select the optimal model using the largest value.
The final values used for the model were size = 3 and decay = 5.
But does anyone know if this refers to one, or all of the outer resamples? Presumably the same tuning parameters won't necessarily be chosen across all outer resamples

high order derivatives in lua?

I was messing around with high order derivatives on lua (i haven't tested this on any different language) and found that the lowest you set delta to the sooner it will output 0.0, look at this code and then the output
why does this happen?
function derivate (f, delta)
delta = delta or 1e-4
return function(x) return (f(x + delta) - f(x)) / delta end
end
c = derivate ( math.cos )
-- c is now -sinx
d = derivate (c)
-- d is now -cosx
e = derivate (d)
-- e is now sinx
f = derivate (e)
-- f is now cosx
print(math.cos(1.23 ), c(1.23) , d(1.23) , e(1.23) , f(1.23) )
output :
0.3342377271245 -0.94250551224695 -0.3341434795523 0.94257934790676 0.0

LinearRegressionWithSGD() returns NaN

I am trying to use LinearRegressionWithSGD on Million Song Data Set and my model returns NaN's as weights and 0.0 as the intercept. What might be the issue for the error ? I am using Spark 1.40 in standalone mode.
Sample data: http://www.filedropper.com/part-00000
Here is my full code:
// Import Dependencies
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.mllib.util.MLUtils
import org.apache.spark.mllib.regression.LinearRegressionModel
import org.apache.spark.mllib.regression.GeneralizedLinearAlgorithm
import org.apache.spark.mllib.regression.LinearRegressionWithSGD
// Define RDD
val data =
sc.textFile("/home/naveen/Projects/millionSong/YearPredictionMSD.txt")
// Convert to Labelled Point
def parsePoint (line: String): LabeledPoint = {
val x = line.split(",")
val head = x.head.toDouble
val tail = Vectors.dense(x.tail.map(x => x.toDouble))
return LabeledPoint(head,tail)
}
// Find Range
val parsedDataInit = data.map(x => parsePoint(x))
val onlyLabels = parsedDataInit.map(x => x.label)
val minYear = onlyLabels.min()
val maxYear = onlyLabels.max()
// Shift Labels
val parsedData = parsedDataInit.map(x => LabeledPoint(x.label-minYear
, x.features))
// Training, validation, and test sets
val splits = parsedData.randomSplit(Array(0.8, 0.1, 0.1), seed = 123)
val parsedTrainData = splits(0).cache()
val parsedValData = splits(1).cache()
val parsedTestData = splits(2).cache()
val nTrain = parsedTrainData.count()
val nVal = parsedValData.count()
val nTest = parsedTestData.count()
// RMSE
def squaredError(label: Double, prediction: Double): Double = {
return scala.math.pow(label - prediction,2)
}
def calcRMSE(labelsAndPreds: RDD[List[Double]]): Double = {
return scala.math.sqrt(labelsAndPreds.map(x =>
squaredError(x(0),x(1))).mean())
}
val numIterations = 100
val stepSize = 1.0
val regParam = 0.01
val regType = "L2"
val algorithm = new LinearRegressionWithSGD()
algorithm.optimizer
.setNumIterations(numIterations)
.setStepSize(stepSize)
.setRegParam(regParam)
val model = algorithm.run(parsedTrainData)
I am not familiar with this specific implementation of SGD, but generally if a gradient descent solver goes to nan that means that the learning rate is too big. (in this case I think it is the stepSize variable).
Try to lower it by an order of magnitude each time until it starts to converge
I can think there are two possibilities.
stepSize is big. You should try something like 0.01, 0.03, 0.1,
0.3, 1.0, 3.0....
Your train data have NaN. If so, result will be likely NaN.

Is an admisible heuristic always monotone (consistent)?

For the A* search algorithm, provided an heuristic h, supose h is admisible.
That is:
h(n) ≤ h*(n) for every node n, where h* is the real cost from n to goal.
Does this ensure the heuristic is monotone?
That is:
f(n) ≤ g(n') + h(n') for every sucesor n' of n, where f(n)= h(n) + g(n) and g(n) is the accumulated cost.
No.
Assume you have three successor states s1, s2, s3 and a goal state g so that s1 -> s2 -> s3 -> g.
s1 is the starting node.
Consider also the following values for h(s) and h*(s) (i.e. true cost):
h(s1) = 3 , h*(s1) = 6
h(s2) = 4 , h*(s2) = 5
h(s3) = 3 , h*(s3) = 3
h(g) = 0 , h*(g) = 0
Following the only path to the goal we can have that:
g(s1) = 0, g(s2) = 1, g(s3) = 3, g(g) = 6, coinciding with the true cost above.
Although the heuristic function is admissible (h(s) <= h*(s)), f(n) will not be monotonic. For instance f(s1) = h(s1) + g(s1) = 3 while f(s2) = h(s2) + g(s2) = 5 with f(s1) < f(s2). Same holds between f(s2) and f(s3).
Of course this means you have a quite uninformative heuristic.

Resources