octave:steepest descent : how to minimize an equation - machine-learning

I am new with Octave.Now I am trying to implement steepest descent algorithm in Octave.
For example minimization of f(x1,x2) = x1^3 + x2^3 - 2*x1*x2
Estimate starting design point x0, iteration counter k0, convergence parameter tolerence = 0.1.
Say this staring point is (1,0)
Compute gradient of f(x1,x2) at the current point x(k) as grad(f). I will use numerical differentiation here.
d/dx1 (f) = lim (h->0) (f(x1+h,x2) - f(x1,x2) )/h
This is grad(f)=(3*x1^2 - 2*x2, 3*x2^2 - 2*x1)
grad(f) at (0,1) is c0 = (3,-2)
since L2 norm of c0 > tolerence, we proceed for next step
direction d0 = -c0 = (-3,2)
Calculate step size a. Minimize f(a) = f(x0 + a*d0) = (1-3a,2a) = (1-3a)^3 + (2a)^3 - 2*(1-3a)*(2a). I am not keeping constant step size.
update: new[x1,x2] = old[x1,x2]x + a*d0.
Everything is fine until step 5. I don't know how to implement an equation , or directly get a minimum value of an equation in Octave . How to do it ?
Edit
How can we use steepest descent with this convex function : f(x, y) = 4x^2 − 4xy + 2y^2

Well the short answer is "you cannot". Not in general, at least. Optimization problem in line 5 is hard on its own. Even though it is one dimensional, you are optimizing over highly non convex function. Thus what you can do is run a log-scale line searcch (just sampling bigger and bigger steps and choosing a minimum) or running another "nested" optimizer, like a regular SD with fixed step size on the problem in step 5 or you can approximate this function with something simpler (like 2 order polynomial) and go directly to the optimum of the approximation. Whichever way you choose - it will be the approximation. There is no way to get to actual minimum. The only ability to solve it directly is to still work on symbolic level, and if the function is simple enough (like polynomial of small degree) you can find its extremas analytically.
As a side note - your whole optimization problem is ill defined, unless there are some constraints you are not talking about. It's minimum is in (-infty, -infty) (it decreases indifinitely).

Related

In backpropogation, what does it mean when the error of a neural network converges to 0.5?

I've been trying to learn the math behind neural networks and have implemented (in Octave) a version of the following equations which include bias terms.
Back-propagation equations matrix form:
Visual representation of the problem and Network:
clear; clc; close all;
#Initialize weights and bias from input to hidden layer
W1 = rand(3,4)
b1 = ones(3,1)
#Initialize weights from hidden to output
W2 = rand(2,3)
b2 = ones(2,1)
#define sigmoid function
s = #(z) 1./(1 + exp(-z));
ds = #(z) s(z).*(1-s(z));
data = csvread("data.txt");
for j = 1 : 100
for i = 1 : length(data)
x0 = data(i,2:5)';
#Find the truth
if data(i,6) == 1 ;
t = [1;0] ;
else
t = [0;1];
end
#Forward propagate
x1 = s(W1*x0 + b1);
x2 = s(W2*x1 + b2);
iter = (j-1)*length(data) + i;
E((j-1)*length(data) + i) = norm(x2-t)^2;
E(length(E))
#Back propagate
delta2 = (x2-t).*ds(W2*x1+b2);
delta1 = W2'*delta2.*ds(W1*x0+b1);
dedw2 = delta2*x1';
dedw1 = delta1*x0';
alpha = 0.001*(40000-iter)/40000;
W2 = W2 - alpha*dedw2;
W1 = W1 - alpha*dedw1;
b2 = b2 - alpha*delta2;
b1 = b1 - alpha*delta1;
end
end
plot(E)
title('Gradient Descent')
xlabel('Iteration')
ylabel('Error')
When I run this, I converge on weights that give an constant error of 0.5 rather than 0.0. The error plot looks something like this depending on the initial samples of W1 and W2:
The resulting weights W1 and W2 yield output ~[0.5,0.5] for the whole set rather than [1,0](isStairs = true) or [0,1](isStairs = False)
Other information:
If I loop over a single data point instead of the entire learning set, it does converge to zero error for that particular case. (like 20 iterations or so), so I assume my derivatives are correct?
For the model to converge the learning rate has to be insanely small. Not sure what this means.
Is this neural network valid to solve the described problem? If so, what does it mean to converge to an error of 0.5?
The NN learns from data. If there is only one example, it will learn this example by heard and you have zero error. But if you have more examples, they will likely not lie on a nice curve, but are noisy instead. So it is harder to learn the data by heard for the network (it also depends on the number of free parameters that the NN has but you get the idea)... However, you don't want the NN to learn everything in detail. You want it to learn the overall trend (so not the noise). But this also means, that your error won't converge to zero as there is noise, which your NN should not learn... So don't worry if you have a (small) error at the end.
But what about the learning rate? Well, imagine you have 10 examples. Eight of them describe a perfect line but two exhibit noise. One sightly to the right (lets say +1) and the other slightly to the left (-1). If the NN estimates one of those points and updates to minimize the error drawn from it. The update will jump from + to - or vice versa. Depending on your learning rate, this jumping may eventually converge to the middle (which is the correct function) or may go on forever... This is essentially what the learning rate does: it determines how much impact an estimation error has on the update/learning of the network. So a good idea is to choose a larger learning rate the the beginning (where the network has a really bad performance due to its random initialization) and decrease the rate when it already learned something. You can achieve the same thing with a small learning rate but you will need longer time for it;)

Gradient from non-trainable weights function

I'm trying to implement a self-written loss function. My pipeline is as follows
x -> {constant computation} = x_feature -> machine learning training -> y_feature -> {constant computation} = y_produced
These "constant computations" are necessary to bring out the differences between the desired o/p and produced o/p.
So if I take the L2 norm of the y_produced and y_original, how should I incorporate this loss in the original loss.
Please Note that y_produced has a different dimension than y_feature.
As long as you are using differentiable operations there is no difference between "constant transformations" and "learnable ones". There is no such distinction, look even at the linear layer of a neural net
f(x) = sigmoid( W * x + b )
is it constant or learnable? W and b are trained, but "sigmoid" is not, yet gradient flows the same way, no matter if something is a variable or not. In particular gradient wrt. to x is the same for
g(x) = sigmoid( A * x + c )
where A and c are constants.
The only problem you will encounter is using non-differentiable operations, such as: argmax, sorting, indexing, sampling etc. these operations do not have a well defined gradient thus you cannot directly use first order optimisers with them. As long as you stick with the differentiable ones - the problem described does not really exist - there is no difference between "constant transromations" and any other transformations - no matter change of the size etc.

Wouldn't setting the first derivative of Cost function J to 0 gives the exact Theta values that minimize the cost?

I am currently doing Andrew NG's ML course. From my calculus knowledge, the first derivative test of a function gives critical points if there are any. And considering the convex nature of Linear / Logistic Regression cost function, it is a given that there will be a global / local optima. If that is the case, rather than going a long route of taking a miniscule baby step at a time to reach the global minimum, why don't we use the first derivative test to get the values of Theta that minimize the cost function J in a single attempt , and have a happy ending?
That being said, I do know that there is a Gradient Descent alternative called Normal Equation that does just that in one successful step unlike the former.
On a second thought, I am thinking if it is mainly because of multiple unknown variables involved in the equation (which is why the Partial Derivative comes into play?) .
Let's take an example:
Gradient simple regression cost function:
Δ[RSS(w) = [(y-Hw)T(y-Hw)]
y : output
H : feature vector
w : weights
RSS: residual sum of squares
Equating this to 0 for getting the closed form solution will give:
w = (H T H)-1 HT y
Now assuming there are D features, the time complexity for calculating transpose of matrix is around O(D3). If there are a million features, it is computationally impossible to do within reasonable amount of time.
We use these gradient descent methods since they give solutions with reasonably acceptable solutions within much less time.

Are there any machine learning regression algorithms that can train on ordinal data?

I have a function f(x): R^n --> R (sorry, is there a way to do LaTeX here?), and I want to build a machine learning algorithm that estimates f(x) for any input point x, based on a bunch of sample xs in a training data set. If I know the value of f(x) for every x in the training data, this should be simple - just do a regression, or take the weighted average of nearby points, or whatever.
However, this isn't what my training data looks like. Rather, I have a bunch of pairs of points (x, y), and I know the value of f(x) - f(y) for each pair, but I don't know the absolute values of f(x) for any particular x. It seems like there ought to be a way to use this data to find an approximation to f(x), but I haven't found anything after some Googling; there are papers like this but they seem to assume that the training data comes in the form of a set of discrete labels for each entity, rather than having labels over pairs of entities.
This is just making something up, but could I try kernel density estimation over f'(x), and then do integration to get f(x)? Or is that crazy, or is there a known better technique?
You could assume that f is linear, which would simplify things - if f is linear we know that:
f(x-y) = f(x) - f(y)
For example, Suppose you assume f(x) = <w, x>, making w the parameter you want to learn. How would the squared loss per sample (x,y) and known difference d look like?
loss((x,y), d) = (f(x)-f(y) - d)^2
= (<w,x> - <w,y> - d)^2
= (<w, x-y> - d)^2
= (<w, z> - d)^2 // where z:=x-y
Which is simply the squared loss for z=x-y
Practically, you would need to construct z=x-y for each pair and then learn f using linear regression over inputs z and outputs d.
This model might be too weak for your needs, but its probably the first thing you should try. Otherwise, as soon as you step away from the linearity assumption, you'd likely arrive at a difficult non-convex optimization problem.
I don't see a way to get absolute results. Any constant in your function (f(x) = g(x) + c) will disappear, in the same way constants disappear in an integral.

Intuition about the kernel trick in machine learning

I have successfully implemented a kernel perceptron classifier, that uses an RBF kernel. I understand that the kernel trick maps features to a higher dimension so that a linear hyperplane can be constructed to separate the points. For example, if you have features (x1,x2) and map it to a 3-dimensional feature space you might get: K(x1,x2) = (x1^2, sqrt(x1)*x2, x2^2).
If you plug that into the perceptron decision function w'x+b = 0, you end up with: w1'x1^2 + w2'sqrt(x1)*x2 + w3'x2^2which gives you a circular decision boundary.
While the kernel trick itself is very intuitive, I am not able to understand the linear algebra aspect of this. Can someone help me understand how we are able to map all of these additional features without explicitly specifying them, using just the inner product?
Thanks!
Simple.
Give me the numeric result of (x+y)^10 for some values of x and y.
What would you rather do, "cheat" and sum x+y and then take that value to the 10'th power, or expand out the exact results writing out
x^10+10 x^9 y+45 x^8 y^2+120 x^7 y^3+210 x^6 y^4+252 x^5 y^5+210 x^4 y^6+120 x^3 y^7+45 x^2 y^8+10 x y^9+y^10
And then compute each term and then add them together? Clearly we can evaluate the dot product between degree 10 polynomials without explicitly forming them.
Valid kernels are dot products where we can "cheat" and compute the numeric result between two points without having to form their explicit feature values. There are many such possible kernels, though only a few have been getting used a lot on papers / practice.
I'm not sure if I'm answering your question, but as I remember the "trick" is that you don't explicitly calculate inner products. The perceptron calculates a straight line that separates the clusters. To get curved lines or even circles, instead of changing the perceptron you can change the space that contains the clusters. This is done by using a transformation usually called phi that transform coordinates to from one space to another. The perceptron algorithm is then applied in the new space where it produces a straight line, but when that line then is transformed back to the original space it can be curved.
The trick is that the perceptron only needs to know the inner product of the points of the clusters it is trying to separate. This means that we only need to be able to calculate the inner product of the transformed points. This is what the kernel does K(x,y) = <phi(x), phi(y)> where < . , . > is the inner product in the new space. This means that there is no need to do all the transformations to the new space and back, we don't even need to explicitly know what the transformation phi() is. All that is needed is that K defines an inner product in some space and hope that this inner product and space is useful for separating our clusters.
I think that there was some theorem that says that if the space represented by the kernel has higher dimensionality than the original space it is likely that it will separate the clusters better.
There is really not much to it
The weight in the higher space is
w = sum_i{a_i^t * Phi(x_i)}
and the input vector in the higher space
Phi(x)
so that the linear classification in the higher space is
w^t * input + c > 0
so if you put these together
sum_i{a_i * Phi(x_i)} * Phi(x) + c = sum_i{a_i * Phi(x_i)^t * Phi(x)} + c > 0
the last dot product's computational complexity is linear to the number of dimensions (often intractable, or not wanted)
We solve this by going over to the kernel "magic answer to the dot product"
K(x_i, x) = Phi(x_i)^t * Phi(x)
which gives
sum_i{a_i * K(x_i, x)} + c > 0

Resources