MLP giving inaccurate results - machine-learning

I tried to build a simple MLP with 2 hidden layers and 3 output classes.
What I have done in the model is:
Input images are 120x120 rgb images. Flattened size (3 * 120 * 120)
2 hidden layers of size 100.
Relu activation is used
Output layer has 3 neurons
Code
def model(input, weights, biases):
l_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
l_1 = tf.nn.relu(l_1)
l_2 = tf.add(tf.matmul(l_1, weights['h2']), biases['b2'])
l_2 = tf.nn.relu(l_2)
out = tf.matmul(l_2, weights['out']) + biases['out']
return out
Optimizer
pred = model(input_batch, weights, biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.GradientDescentOptimizer(rate).minimize(cost)
The model however does not work. The accuracy is only equal to that of a random model.
The example followed is this one:
https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/multilayer_perceptron.py

You have a copy-paste typo in def model. First argument name is input while it is x on the next line.
Another trick to use when you suspect that model is not being trained is to run it on the same batch again and again. If implementation is correct and model is being trained it will soon learn that batch by heart yielding 100% accuracy. If it does not then it is an indicator that something is wrong in your implementation.

Related

Discriminator's loss stuck at value = 1 while training conditional GAN

I am training a conditional GAN that generates image time series (similar to video prediction). I built a conditional GAN based on this paper. However, several probelms happened when I was training the cGAN.
Problems of training cGAN:
The discriminator's loss stucks at one.
It seems like the generator's loss is not effected by discriminator no matter how I adjust the hyper parameters related to the discriminator.
Training loss of discriminator
D_loss = (fake_D_loss + true_D_loss) / 2
fake_D_loss = Hinge_loss(D(G(x, z)))
true_D_loss = Hinge_loss(D(x, y))
The margin of hinge loss = 1
Training loss of generator
D_loss = -torch.mean(D(G(x,z))
G_loss = weighted MAE
Gradient flow of discriminator
Gradient flow of generator
Several settings of the cGAN:
The output layer of discriminator is linear sum.
The discriminator is trained twice per epoch while the generator is only trained once.
The number of neurons of the generator and discriminator are exactly the same as the paper.
I replaced the ReLU (original setting) to LeakyReLU to avoid nan.
I added gradient norm to avoid gradient vanishing problem.
Other hyper parameters are listed as follows:
Hyper parameters
Paper
Mine
number of input images
4
4
number of predicted images
18
10
batch size
16
16
opt_g, opt_d
Adam
Adam
lr_g
5e-5
5e-5
lr_d
2e-4
2e-4
The loss function I use for discriminator.
def HingeLoss(pred, validity, margin=1.):
if validity:
loss = F.relu(margin - pred)
else:
loss = F.relu(margin + pred)
return loss.mean()
The loss function for examining the validity of predicted image from generator.
def HingeLossG(pred):
return -torch.mean(pred)
I use the trainer of pytorch_lightning to train the model. The training codes I wrote are as follows.
def training_step(self, batch, batch_idx, optimizer_idx):
x, y = batch
x.requires_grad = True
if self.n_sample > 1:
pred = [self(x) for _ in range(self.n_sample)]
pred = torch.mean(torch.stack(pred, dim=0), dim=0)
else:
pred = self(x)
##### TRAIN DISCRIMINATOR #####
if optimizer_idx == 1:
true_D_loss = self.discriminator_loss(self.discriminator(x, y), True)
fake_D_loss = self.discriminator_loss(self.discriminator(x, pred.detach()), False)
D_loss = (fake_D_loss + true_D_loss) / 2
return D_loss
##### TRAIN GENERATOR #####
if optimizer_idx == 0:
G_loss = self.generator_loss(pred, y)
GD_loss = self.generator_d_loss(self.discriminator(x, pred.detach()))
train_G_loss = G_loss + GD_loss
return train_G_loss
I have several guesses of why these problems may occur:
Since the original model predicts 18 frames rather than 10 frames (my version), maybe the number of neurons in the original generator is too much for my case (predicting 10 frames), leading an exceedingly powerful generator that breaks the balance of training. However, I've tried to lower the learning rate of generator to 1e-5 (original 5e-5) or increase the training times of discriminator to 3 to 5 times. It seems that the loss curve of generator didn't much changed.
Various results of training cGAN
I have also adjust the weights of generator's loss, but the same problems still occurred.
The architecture codes of this model: https://github.com/hyungting/DGMR-pytorch

Variational autoencoder (VAE) predicts 1 constant value

I'm currently traininig a VAE model.
The images in question are microstructure rocks images (like these).
I defind a compount loss function having the sum 2 folds:
MSE as my images are grayscale but non binary.
KLL divergence.
I was having nan values for loss function, but figured out that a way around this is to use the weighted sum of the 2 losses. I've chosen the weight the MSE by the images size (256x256), so it becomes:
MSE = MSEx256x256
and the KLL divergence by 0.1 factor.
The nan problem was solved then, but my model when predicting just predicts one value for the whole image, so if I predict an output it will be an array of 256*256 values all the same at e.g. 0.502.
Model specs:
10 layers encoder / decoder
Latent vector space of dimension 5
SGD optimizer at lr=0.001
Loss values upon training goes from a billion number to 3000 from 2nd epoch and fluctuates around it
Accuracy upon training or valiudating is below 0.001, I've read this metric is irrelavnt anyway when it comes to VAE
Here is how I sample from the latent vector specs:
sample = Lambda(get_sample_from_dist, output_shape=(latent_dim, ), name='sample')([mu, log_sigma])
def get_sample_from_dist(args):
mean_vec, std_dev_vec = args
eta_vec = K.random_normal(shape=(K.shape(mean_vec)[0], K.int_shape(mean_vec)[1]), mean=0, stddev=1)
return mean_vec + K.exp(std_dev_vec) * eta_vec
and here is how the encoder generate mu and log_sigma:
x is the output of the last encoder layer
mu = Dense(latent_dim, name='latent_mu')(x)
log_sigma = Dense(latent_dim, name='latent_sigma')(x)
and here is my loss
def vae_loss_func(inputs, outputs, mu, log_sigma):
x1 = K.flatten(inputs)
x2 = K.flatten(outputs)
reconstruction_loss = losses.mse(x1, x2)*256**2
kl_loss = -0.5* 0.1*K.sum(1 + log_sigma - K.square(mu) - K.square(K.exp(log_sigma)), axis=-1)
vae_loss = K.mean(reconstruction_loss + kl_loss)
return vae_loss
Any thoughts where things are going wrong?
I tried different weighing factors in the loss function and using strides and dropouts layers, none of these worked. I'm expecting the generated image to be varying in pixel value and evenatually capturing the rock structure.

What happens when the label's dimension is different from neural network's output layer's dimension in PyTorch?

It makes intuitive sense to me that the label's dimension should be the same as the neural network's last layer's dimension. However, with some experiments using PyTorch, it turns out that it somehow works.
Code:
import torch
import torch.nn as nn
X = torch.tensor([[1],[2],[3],[4]], dtype=torch.float32) # training input
Y = torch.tensor([[2],[4],[6],[8]], dtype=torch.float32) # training label
model = nn.Linear(1,3)
learning_rate = 0.01
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(10):
y_pred model(X)
loss = nn.MSELoss(Y, y_pred)
loss.backward()
optimizer.zero_grad()
optimizer.step()
In the above code, model = nn.Linear(1,3) is used instead of model = nn.Linear(1,1). As a result, while Y.shape is (4,1), y_pred.shape is (4,3).
The code works with a warning saying that "Using a target size that is different to the input size will likely lead to incorrect results due to broadcasting. "
I got the following output when I executed model(torch.tensor([10], dtype=torch.float32)):
tensor([20.0089, 19.6121, 19.1967], grad_fn=<AddBackward0>)
All three outputs seems correct to me. But how is the loss calculated if the sizes of the data are different?
Should we in any case use a target size that is different to the input size? Is there a benefit for this?
Assuming you are working with batch_size=4, you are using a target with 1 component vs 3 for your predicted tensor. You don't actually see the intermediate results when computing the loss with nn.MSELoss, using the reduction='none' option will allow you to do so:
>>> criterion = nn.MSELoss(reduction='none')
>>> y = torch.rand(2,1)
>>> y_hat = torch.rand(2,3)
>>> criterion(y_hat, y).shape
(2, 3)
Considering this, you can conclude that the target y, being too small, has been broadcasted to the predicted tensor y_hat. Essentially, in your example, you will get the same result (without the warning) as:
>>> y_repeat = y.repeat(1, 3)
>>> criterion(y_hat, y_repeat)
This means that, for each batch, you are L2-optimizing all its components against a single value: MSE(y_hat[0,0], y[0]), MSE(y_hat[0,1], y[0]), and MSE(y_hat[0,2], y[0]), same goes for y[1] and y[2].
The warning is there to make sure you're conscious of this broadcast operation. Maybe this is what you're looking to do, in this case, you should broadcast the target tensor yourself. Otherwise, it won't make sense to do so.

Generalized dice loss for multi-class segmentation: keras implementation

I just implemented the generalised dice loss (multi-class version of dice loss) in keras, as described in ref :
(my targets are defined as: (batch_size, image_dim1, image_dim2, image_dim3, nb_of_classes))
def generalized_dice_loss_w(y_true, y_pred):
# Compute weights: "the contribution of each label is corrected by the inverse of its volume"
Ncl = y_pred.shape[-1]
w = np.zeros((Ncl,))
for l in range(0,Ncl): w[l] = np.sum( np.asarray(y_true[:,:,:,:,l]==1,np.int8) )
w = 1/(w**2+0.00001)
# Compute gen dice coef:
numerator = y_true*y_pred
numerator = w*K.sum(numerator,(0,1,2,3))
numerator = K.sum(numerator)
denominator = y_true+y_pred
denominator = w*K.sum(denominator,(0,1,2,3))
denominator = K.sum(denominator)
gen_dice_coef = numerator/denominator
return 1-2*gen_dice_coef
But something must be wrong. I'm working with 3D images that I have to segment for 4 classes (1 background class and 3 object classes, I have a imbalanced dataset). First odd thing: while my train loss and accuracy improve during training (and converge really fast), my validation loss/accuracy are constant trough epochs (see image). Second, when predicting on test data, only the background class is predicted: I get a constant volume.
I used the exact same data and script but with categorical cross-entropy loss and get plausible results (object classes are segmented). Which means something is wrong with my implementation. Any idea what it could be?
Plus I believe it would be usefull to the keras community to have a generalised dice loss implementation, as it seems to be used in most of recent semantic segmentation tasks (at least in the medical image community).
PS: it seems odd to me how the weights are defined; I get values around 10^-10. Anyone else has tried to implement this? I also tested my function without the weights but get same problems.
I think the problem here are your weights. Imagine you are trying to solve a multiclass segmentation problem, but in each image only a few classes are ever present. A toy example of this (and the one which led me to this problem) is to create a segmentation dataset from mnist in the following way.
x = 28x28 image and y = 28x28x11 where each pixel is classified as background if it is below a normalised grayscale value of 0.4, and otherwise is classified as the digit which is the original class of x. So if you see a picture of the number one, you will have a bunch of pixels classified as one, and the background.
Now in this dataset you will only ever have two classes present in the image. This means that, following your dice loss, 9 of the weights will be
1./(0. + eps) = large
and so for every image we are strongly penalising all 9 non-present classes. An evidently strong local minima the network wants to find in this situation is to predict everything as a background class.
We do want to penalise any incorrectly predicted classes which are not in the image, but not so strongly. So we just need to modify the weights. This is how I did it:
def gen_dice(y_true, y_pred, eps=1e-6):
"""both tensors are [b, h, w, classes] and y_pred is in logit form"""
# [b, h, w, classes]
pred_tensor = tf.nn.softmax(y_pred)
y_true_shape = tf.shape(y_true)
# [b, h*w, classes]
y_true = tf.reshape(y_true, [-1, y_true_shape[1]*y_true_shape[2], y_true_shape[3]])
y_pred = tf.reshape(pred_tensor, [-1, y_true_shape[1]*y_true_shape[2], y_true_shape[3]])
# [b, classes]
# count how many of each class are present in
# each image, if there are zero, then assign
# them a fixed weight of eps
counts = tf.reduce_sum(y_true, axis=1)
weights = 1. / (counts ** 2)
weights = tf.where(tf.math.is_finite(weights), weights, eps)
multed = tf.reduce_sum(y_true * y_pred, axis=1)
summed = tf.reduce_sum(y_true + y_pred, axis=1)
# [b]
numerators = tf.reduce_sum(weights*multed, axis=-1)
denom = tf.reduce_sum(weights*summed, axis=-1)
dices = 1. - 2. * numerators / denom
dices = tf.where(tf.math.is_finite(dices), dices, tf.zeros_like(dices))
return tf.reduce_mean(dices)

Keras: model with one input and two outputs, trained jointly on different data (semi-supervised learning)

I would like to code with Keras a neural network that acts both as an autoencoder AND a classifier for semi-supervised learning. Take for example this dataset where there is a few labeled images and a lot of unlabeled images: https://cs.stanford.edu/~acoates/stl10/
Some papers listed here achieved that, or very similar things, successfully.
To sum up: if the model would have the same input data shape and the same "encoding" convolutional layers, but would split into two heads (fork-style), so there is a classification head and a decoding head, in a way that the unsupervised autoencoder will contribute to a good learning for the classification head.
With TensorFlow there would be no problem doing that as we have full control over the computational graph.
But with Keras, things are more high-level and I feel that all the calls to ".fit" must always provide all the data at once (so it would force me to tie together the classification head and the autoencoding head into one time-step).
One way in keras to almost do that would be with something that goes like this:
input = Input(shape=(32, 32, 3))
cnn_feature_map = sequential_cnn_trunk(input)
classification_predictions = Dense(10, activation='sigmoid')(cnn_feature_map)
autoencoded_predictions = decode_cnn_head_sequential(cnn_feature_map)
model = Model(inputs=[input], outputs=[classification_predictions, ])
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
model.fit([images], [labels, images], epochs=10)
However, I think and I fear that if I just want to fit things in that way it will fail and ask for the missing head:
for epoch in range(10):
# classifications step
model.fit([images], [labels, None], epochs=1)
# "semi-unsupervised" autoencoding step
model.fit([images], [None, images], epochs=1)
# note: ".train_on_batch" could probably be used rather than ".fit" to avoid doing a whole epoch each time.
How should one implement that behavior with Keras? And could the training be done jointly without having to split the two calls to the ".fit" function?
Sometimes when you don't have a label you can pass zero vector instead of one hot encoded vector. It should not change your result because zero vector doesn't have any error signal with categorical cross entropy loss.
My custom to_categorical function looks like this:
def tricky_to_categorical(y, translator_dict):
encoded = np.zeros((y.shape[0], len(translator_dict)))
for i in range(y.shape[0]):
if y[i] in translator_dict:
encoded[i][translator_dict[y[i]]] = 1
return encoded
When y contains labels, and translator_dict is a python dictionary witch contains labels and its unique keys like this:
{'unisex':2, 'female': 1, 'male': 0}
If an UNK label can't be found in this dictinary then its encoded label will be a zero vector
If you use this trick you also have to modify your accuracy function to see real accuracy numbers. you have to filter out all zero vectors from our metrics
def tricky_accuracy(y_true, y_pred):
mask = K.not_equal(K.sum(y_true, axis=-1), K.constant(0)) # zero vector mask
y_true = tf.boolean_mask(y_true, mask)
y_pred = tf.boolean_mask(y_pred, mask)
return K.cast(K.equal(K.argmax(y_true, axis=-1), K.argmax(y_pred, axis=-1)), K.floatx())
note: You have to use larger batches (e.g. 32) in order to prevent zero matrix update, because It can make your accuracy metrics crazy, I don't know why
Alternative solution
Use Pseudo Labeling :)
you can train jointly, you have to pass an array insted of single label.
I used fit_generator, e.g.
model.fit_generator(
batch_generator(),
steps_per_epoch=len(dataset) / batch_size,
epochs=epochs)
def batch_generator():
batch_x = np.empty((batch_size, img_height, img_width, 3))
gender_label_batch = np.empty((batch_size, len(gender_dict)))
category_label_batch = np.empty((batch_size, len(category_dict)))
while True:
i = 0
for idx in np.random.choice(len(dataset), batch_size):
image_id = dataset[idx][0]
batch_x[i] = load_and_convert_image(image_id)
gender_label_batch[i] = gender_labels[idx]
category_label_batch[i] = category_labels[idx]
i += 1
yield batch_x, [gender_label_batch, category_label_batch]

Resources