Measuring distance between objects from a photo, Perspective transform - image-processing

I have two questions which could be related:
1.) I would like to estimate distances between objects which are positioned in one plane from a photo. Geometrical shape of one object in the photo is rectangular and its dimensions are known, but there is no information on the photo (Camera focal length, photo angle, senor size etc…). For example, say I have the following PCB photo and dimensions of the rectangular chip are known to be 20x10mm, all objects lie in a plane. Is it even possible to estimate the distances (in top view) between other PCB components ?
In this particular case, maximum distance error of 2-3mm would be acceptable.
2.) Say I have similar PCB photo like the above, where I have one feature (object) for which I know it is rectangular shaped. I would like to transform the image perspective so that the object looks rectangular. I have tried imageJ (Fiji) and Interactive Perspective Plugin for this task. First I display rectangular grid over the image and then manually transform the image using the plugin till the object does not appear rectangular. But for some photo angles I find it impossible to manually adjust the control points in order to get rectangular object shape.
Does somebody know alternative approach using imageJ (Fiji) or Octave ? A solution in python would also be ok, although I don’t have much python experience (just recently installed Anaconda with Spyder).

A few years ago, I created a software that seems good for you. It corrects perspective transforming a quadrilateral to a rectangle.
Here is the result:
,
where you can measure distances.

Related

How to measure room dimention using RpLIDAR(2d Lidar) or image processing

In a project, we are creating a virtual tour of an apartment. We want to display the room dimension in that virtual image. So far we are using RICO theta v to create the virtual tour. One example is given below.
The first image shows a panoramic view of the room. Now using Lidar we want to measure the room length and width. My question is: is there any way where i could attach this Lidar information to the image that I got from the RICO. so that the user can measure the distance from the picture or we can display the length and width of the room.
so, in short, I want to know:
1. What could be the possible solution to modify the image based on Lidar output?
2. Is there any way where I could find room dimensions using Lidar output?
I will be so glad if you give me some ideas.
The LIDAR sensor outputs a pointcloud, which is a 3D representation of your room. Every point in the 3D pointcloud represents a small point in the room, and the distances between points are distances between real objects.
Therefore, you would only need to know which points correspond to the corners of the room, and then you could measure the distance between them and compute the area. There can be some options of automatically detecting corners in the pointcloud, some of which are suggested here: How to find corner points of any object in point cloud and find distance between corner points in inch/cm/m?
The problem is that this is not as easy to correlate with an image. One approach, assuming a static setup, would be to manually align the pointcloud with the image.
Also, as there are approaches for automatic corner detection in the pointcloud, there are some options for automatic corner detection in images, such as the Harris corner detector.
Of course, all these methods will be prone to detecting all corners in the image, so some heuristics for filtering them might be needed.

Object projection in geographic coordinate system

I am trying to figure out how to roughly project the geographic position of an annotated object in an image?
The Setup
A picture with a known object in it. i.e. we know the width/height.
A bounding box highlighting where that object is in frame. X,Y,Width,Height.
The precise longitude and latitude of the camera that took the picture. The Origin.
The heading of the camera.
The focal length of the camera.
The camera sensor size.
The height of the camera off the ground.
Can anyone point me toward a solution for roughly projecting the objects location from the image origin location, given those data points?
The solution is simple if you assume an ellipsoidal surface for the Earth. If you need to use a Digital Terrain Model (DTM) things will get quickly more complicated. For example, your object may be visible in the image but occluded on the DTM because of various sources of error. In the following I assume you work with the ellipsoid.
Briefly, what you need to do is backproject the vertices of the image bounding box, obtaining four vectors (rays) in camera coordinates. You then transform them into Earth-Centered Earth-Fixed (ECEF) coordinates and solve for the intersection of the rays with the WGS-72 (or WGS-84) ellipsoid as explained here.
I recommend using the nvector library to help with this kind of calculations. You didin't specify the language you work with, but there are ports of nvector to many common languages, including Python and Matlab.

OpenCV - calibrate camera using static images in water

I have a photocamera mounted vertically under water in a tank, looking downwards.
There is a flat grid on the bottom of the tank (approx 2m away from the camera).
I want to be able to place markers on the bottom, and use computer vision to know their real life exact position.
So, I need to map from pixels to mm.
If I am not mistaken, cv::calibrateCamera(...) does just this, but is dependent on moving a pattern in front of the camera.
I have just static pictures of the scene, and the camera never moves in relation to the grid. Thus, I have only a "single" image to find the parameters.
How can I do this using the grid?
Thank you.
Interesting problem! The "cute" part is the effect on the intrinsic parameters of the refraction at the water-glass interface, namely to increase the focal length (or, conversely, to reduce the field of view) compared to the same lens in air. In theory, you could calibrate in air and then correct for the difference in refraction index, but calibrating directly in water is likely to give you more accurate results.
Do know your accuracy requirements? And have you verified that your lens/sensor combination is adequate to meet them (with an adequate margin)? To answer the question you need to estimate (either by calculation from the lens and sensor specifications, or experimentally using a resolution chart) whether you can resolve in an image the minimal distances required by your application.
From the wording of your question I think that you are interested only in measurements on a single plane. So you only need to (a) remove the nonlinear (barrel or pincushion) lens distortion and (b) estimate the homography between the plane of interest and the image. Once you have the latter, you can directly convert from undistorted image coordinates to world ones by matrix multiplication. Additionally if (as I imagine) the plane of interest is roughly parallel to the image plane, you should not have any problem keeping the entire field-of-view in focus.
Of course, for all of this to work as expected, you should make sure that the tank bottom is really flat, within the measurement tolerances of your application. Otherwise you are really dealing with a 3D problem, and need to modify your procedures accordingly.
The actual procedure depends a lot on the size of the tank, which you don't indicate clearly. If it's small enough that it is practical to manufacture a chessboard-like movable calibration target, by all means go for it. You may want to take a look at this other answer for suggestions. In the following I'll discuss the more interesting case in which your tank is large, e.g. the size of a swimming pool.
I'd proceed by sticking calibration markers in a regular grid at the pool bottom. I'd probably choose checker-like markers like these, maybe printing them myself with a good laser printer on plastic with an adhesive backing (assuming you can leave them in place forever). You should plan on having quite a few of them, say, an 8x8 or 10x10 grid, covering as much as possible of the field of view of the camera in its operating position and pose. To help with lining up the grid nicely you might use a laser line projector of suitable fan angle, or a laser pointer attached to a rotating support. Note carefully that it is not necessary that they be affixed in a precise X-Y grid (which may be complicated, depending on the size of your pool), only that their positions with respect any arbitrarily chosen (but fixed) three of them be known. In other words, you can attach them to the bottom approximately in a grid, then measure the distances of three extreme corners from each other as accurately as you can, thus building a base triangle, then measure the distances of all the other corners from the vertices of the triangle, and finally reconstruct their true positions with a bit of trigonometry. It's basically a surveying problem and, depending on your accuracy requirements and budget, you may want to enroll a local friendly professional surveyor (and their tools) to get it done as precisely as necessary.
Once you have your grid, you can fill the pool, get your camera, focus and f-stop the lens as needed for the application. From now on you may not touch the focus and f-stop ever again, under penalty of miscalibrating - exposure can only be controlled by the exposure time, so make sure to have enough light. Disable any and all auto-focus and auto-iris functions, if any. If the camera has a non-rigid lens mount (e.g. a DLSR), you'll need some kind of mechanical rig to ensure that the lens-body pair stay rigid. F-stop as close as you can, given the available lighting and sensor, so to have a fair bit of depth of field available. Then take several photos (~ 10) of the grid, moving and rotating the camera, and going a bit closer and farther away than your expected operating distance from the plane. You'll want to "see" in some images some significant perspective foreshortening of the grid - this is needed to accurately calibrate the focal length. Avoid JPG and any other lossy compression format when storing the images - use lossless PNG or TIFF.
Once you have the images, you can manually mark and identify the checker markers in the images. For a once-off project like this I would not bother with automatic identification, just do it manually (e.g. in Matlab, or even in Photoshop or Gimp). To help identify the markers, you could, e.g. print a number next to them. Once you have the manual marks, you can refine them automatically to subpixel accuracy, e.g. using cv::findCornerSubpix.
You're almost done. Feed the "reference" measured position of the real corners, and the observed ones in all images, to your favorite camera calibration routine, e.g. cv::calibrateCamera. You use the nominal focal length of the camera (converted to pixels) for an initial estimate, along with null distortion. If all goes well, you will obtain the camera intrinsic parameters, which you will keep, and the camera poses at all images, which you'll throw away.
Now you can mount the camera in your final setup, as needed by your application, and take one further image of the grid. Mark and refine the corner positions as before. Undistort their image positions using the distortion parameters returned by the calibration. Finally compute the homography between the reference positions of the real markers (in meters) and their undistorted positions, and you're done.
HTH
To calibrate the camera you do need multiple images of the checkerboard (or one of the other patterns found here). What you can do, is calibrate the camera outside of the water or do a calibration sequence once.
Once you have that information (focal length, center of lens, distortion, etc). You can use the solvePNP function to estimate the orientation of a single board. This estimation provides you with a distance from the camera to the board.
A completely different alternative could be to find what kind of lens the camera uses and manually fill in the data. I've not tried this, so I'm uncertain how well this would work.

Measuring an object from a picture using a known object size

So what I need to do is measuring a foot length from an image taken by an ordinary user. That image will contain a foot with a black sock wearing, a coin (or other known size object), and a white paper (eg A4) where the other two objects will be upon.
What I already have?
-I already worked with opencv but just simple projects;
-I already started to read some articles about Camera Calibration ("Learn OpenCv") but still don't know if I have to go so far.
What I am needing now is some orientation because I still don't understand if I'm following right way to solve this problem. I have some questions: Will I realy need to calibrate camera to get two or three measures of the foot? How can I find the points of interest to get the line to measure, each picture is a different picture or there are techniques to follow?
Ps: sorry about my english, I really have to improve it :-/
First, some image acquisition things:
Can you count on the black sock and white background? The colors don't matter as much as the high contrast between the sock and background.
Can you standardize the viewing angle? Looking directly down at the foot will reduce perspective distortion.
Can you standardize the lighting of the scene? That will ease a lot of the processing discussed below.
Lastly, you'll get a better estimate if you zoom (or position the camera closer) so that the foot fills more of the image frame.
Analysis. (Note this discussion will directed to your question of identifying the axes of the foot. Identifying and analyzing the coin would use a similar process, but some differences would arise.)
The next task is to isolate the region of interest (ROI). If your camera is looking down at the foot, then the ROI can be limited to the white rectangle. My answer to this Stack Overflow post is a good start to square/rectangle identification: What is the simplest *correct* method to detect rectangles in an image?
If the foot lies completely in the white rectangle, you can clip the image to the rect found in step #1. This will limit the image analysis to region inside the white paper.
"Binarize" the image using a threshold function: http://opencv.willowgarage.com/documentation/cpp/miscellaneous_image_transformations.html#cv-threshold. If you choose the threshold parameters well, you should be able to reduce the image to a black region (sock pixels) and white regions (non-sock pixel).
Now the fun begins: you might try matching contours, but if this were my problem, I would use bounding boxes for a quick solution or moments for a more interesting (and possibly robust) solution.
Use cvFindContours to find the contours of the black (sock) region: http://opencv.willowgarage.com/documentation/structural_analysis_and_shape_descriptors.html#findcontours
Use cvApproxPoly to convert the contour to a polygonal shape http://opencv.willowgarage.com/documentation/structural_analysis_and_shape_descriptors.html#approxpoly
For the simple solution, use cvMinRect2 to find an arbitrarily oriented bounding box for the sock shape. The short axis of the box should correspond to the line in largura.jpg and the long axis of the box should correspond to the line in comprimento.jpg.
http://opencv.willowgarage.com/documentation/structural_analysis_and_shape_descriptors.html#minarearect2
If you want more (possible) accuracy, you might try cvMoments to compute the moments of the shape. http://opencv.willowgarage.com/documentation/structural_analysis_and_shape_descriptors.html#moments
Use cvGetSpatialMoment to determine the axes of the foot. More information on the spatial moment may be found here: http://en.wikipedia.org/wiki/Image_moments#Examples_2 and here http://opencv.willowgarage.com/documentation/structural_analysis_and_shape_descriptors.html#getspatialmoment
With the axes known, you can then rotate the image so that the long axis is axis-aligned (i.e. vertical). Then, you can simply count pixels horizontally and vertically to obtains the lengths of the lines. Note that there are several assumptions in this moment-oriented process. It's a fun solution, but it may not provide any more accuracy - especially since the accuracy of your size measurements is largely dependent on the camera positioning issues discussed above.
Lastly, I've provided links to the older C interface. You might take a look at the new C++ interface (I simply have not gotten around to migrating my code to 2.4)
Antonio Criminisi likely wrote the last word on this subject years ago. See his "Single View Metrology" paper , and his PhD thesis if you have time.
You don't have to calibrate the camera if you have a known-size object in your image. Well... at least if your camera doesn't distort too much and if you're not expecting high quality measurements.
A simple approach would be to detect a white (perspective-distorted) rectangle, mapping the corners to an undistorted rectangle (using e.g. cv::warpPerspective()) and use the known size of that rectangle to determine the size of other objects in the picture. But this only works for objects in the same plane as the paper, preferably not too far away from it.
I am not sure if you need to build this yourself, but if you just need to do it, and not code it. You can use KLONK Image Measurement for this. There is a free and payable versions.

Using OpenCV to correct stereo images

I intend to make a program which will take stereo pair images, taken by a single camera, and then correct and crop them so that when the images are viewed side by side with the parallel or cross eye method, the best 3D effect will be achieved. The left image will be the reference image, the right image will be modified for corrections. I believe OpenCV will be the best software for these purposes. So far I believe the processing will occur something like this:
Correct for rotation between images.
Correct for y axis shift.
Doing so will I imagine result in irregular black borders above and below the right image so:
Crop both images to the same height to remove borders.
Compute stereo-correspondence/disparity
Compute optimal disparity
Correct images for optimal disparity
Okay, so that's my take on what needs doing and the order it occurs in, what I'm asking is, does that seem right, is there anything I've missed, anything in the wrong order etc. Also, which specific functions of OpenCV would I need to use for all the necessary steps to complete this project? Or is OpenCV not the way to go? Much thanks.
OpenCV is great for this.
There is a whole chapter in:
And all the sample code for this in the book ships with the opencv distribution
edit: Roughly the steps are:
Remap each image to remove lens distortions and rotate/translate views to image center.
Crop pixels that don't appear in both views (optional)
Find matching objects in each view (stereoblock matching) create disparity map
Reproject disparity map into 3D model

Resources