I'm working on a problem and I'm not sure if Machine Learning would be an ideal candidate here.
I have a list locations along their alias. This is a supervised set of data that i plan on using to train the model. Using this I want to identify them in a list extracted from a large text corpus. The challenge is that the locations are foreign names so they are spelt in various ways.
Training data
Name: Australia (AUS, Australea, down under)
Name: Vienna (VNA, Jewel of europe)
Corpus Data
Austrea
Country down south
Oustralea
the europe jewel
I am absolutely new at this so I would appreciate it if you could be descriptive.
Thanks
I'm not quite sure on what you do but let's resume your task by the following:
You have a big corpus you will parse
For each line you want to find the corresponding location, according to your training data
The machine learning part will inspect what corresponding means.
The point is to use a metric to evaluate, for each line of the corpus data, which location is most likely to be quoted. To do so, you can work on your training data, your corpus data, and, the metric that assess the connection between both.
Training Data
One way to work is to increase the information you have in your training set. For instance, to go from
Name: Australia (AUS, Australea, down under)
to
Name: Australie ([AUS, Australia], [austral, australia, australea, oustralia], [down under, country down south], [kangooros, Sydney, Canberra])
You noticed that now, arguments are gathered within groups (Of course, you can define yours), and each can be processed using Machine Learning techniques :
International attributes: you can check the ISO 3166-1 by scrapping the website, of you should be able to find a list.
Different names of the country: scrap Google Translate to get a dictionnary of how Australia is written is every other languages
Common denomination
"classical" attributes
...
Corpus Data
Your corpus might be quite heterogeneous. Some pre-processing might be useful such as tokenizing them, so you might see that in a lot of languages, Australia always start with "austral" (do not forget to work with lowercases, unicode, no accent ...).
You can also remove the stopwords that do not provide any information "the", "a", ... Some libraries provides them (for Python, you can check BeautifulSoup) but in your case, you may want to customize them by hand.
Metric
This part defines how close (mathematically speaking, not geographically) are each corpus data to each location of the training data. Then you choose the closer
For each corpus data:
You can check if the word(s) is (are) present in the training data
Check if some words are synonyms down under and down south
Use a similarity measure to evaluate the proximity with each location.
Another way would be to train a Word2Vec with a corpus and to calculate the similarity with each training data - it is definitely more work as it needs some preprocessing, a well-choosen corpus, and a good similarity measure.
Finally, a good algorithm would mix these techniques and some more. There is a lot of preprocessing to do before using Machine Learning techniques but it's definitely doable by starting with a simple algorithm and improving each weak part.
Related
I am building a model that will predict the lead time of products flowing through a pipeline.
I have a lot of different features, one is a string containing a few words about the purpose of the product (often abbreviations, name of the application it will be a part of and so forth). I have previously not used this field at all when doing feature engineering.
I was thinking that it would be nice to do some type of clustering on this data, and then use the cluster ID as a feature for my model, perhaps the lead time is correlated with the type of info present in that field.
Here was my line of thinking)
1) Cleaning & tokenizing text.
2) TF-IDF
3) Clustering
But after thinking more about it, is it a bad idea? Because the clustering was based on the old data, if new words are introduced in the new data this will not be captured by the clustering algorithm, and the data should perhaps be clustered differently now. Does this mean that I would have to retrain the entire model (k-means model and then the supervised model) whenever I want to predict new data points? Are there any best practices for this?
Are there better ways of finding clusters for text data to use as features in a supervised model?
I understand the urge to use an unsupervised clustering algorithm first to see for yourself, which clusters were found. And of course you can try if such a way helps your task.
But as you have labeled data, you can pass the product description without an intermediate clustering. Your supervised algorithm shall then learn for itself if and how this feature helps in your task (of course preprocessing such as removal of stopwords, cleaining, tokenizing and feature extraction needs to be done).
Depending of your text descriptions, I could also imagine that some simple sequence embeddings could work as feature-extraction. An embedding is a vector of for example 300 dimensions, which describes the words in a manner that hp office printer and canon ink jet shall be close to each other but nice leatherbag shall be farer away from the other to phrases. For example fasText-Word-Embeddings are already trained in english. To get a single embedding for a sequence of hp office printerone can take the average-vector of the three vectors (there are more ways to get an embedding for a whole sequence, for example doc2vec).
But in the end you need to run tests to choose your features and methods!
I have been searching and attempting to implement a word embedding model to predict similarity between words. I have a dataset made up 3,550 company names, the idea is that the user can provide a new word (which would not be in the vocabulary) and calculate the similarity between the new name and existing ones.
During preprocessing I got rid of stop words and punctuation (hyphens, dots, commas, etc). In addition, I applied stemming and separated prefixes with the hope to get more precision. Then words such as BIOCHEMICAL ended up as BIO CHEMIC which is the word divided in two (prefix and stem word)
The average company name length is made up 3 words with the following frequency:
The tokens that are the result of preprocessing are sent to word2vec:
#window: Maximum distance between the current and predicted word within a sentence
#min_count: Ignores all words with total frequency lower than this.
#workers: Use these many worker threads to train the model
#sg: The training algorithm, either CBOW(0) or skip gram(1). Default is 0s
word2vec_model = Word2Vec(prepWords,size=300, window=2, min_count=1, workers=7, sg=1)
After the model included all the words in the vocab , the average sentence vector is calculated for each company name:
df['avg_vector']=df2.apply(lambda row : avg_sentence_vector(row, model=word2vec_model, num_features=300, index2word_set=set(word2vec_model.wv.index2word)).tolist())
Then, the vector is saved for further lookups:
##Saving name and vector values in file
df.to_csv('name-submission-vectors.csv',encoding='utf-8', index=False)
If a new company name is not included in the vocab after preprocessing (removing stop words and punctuation), then I proceed to create the model again and calculate the average sentence vector and save it again.
I have found this model is not working as expected. As an example, calculating the most similar words pet is getting the following results:
ms=word2vec_model.most_similar('pet')
('fastfood', 0.20879755914211273)
('hammer', 0.20450574159622192)
('allur', 0.20118337869644165)
('wright', 0.20001833140850067)
('daili', 0.1990675926208496)
('mgt', 0.1908089816570282)
('mcintosh', 0.18571510910987854)
('autopart', 0.1729743778705597)
('metamorphosi', 0.16965581476688385)
('doak', 0.16890916228294373)
In the dataset, I have words such as paws or petcare, but other words are creating relationships with pet word.
This is the distribution of the nearer words for pet:
On the other hand, when I used the GoogleNews-vectors-negative300.bin.gz, I could not add new words to the vocab, but the similarity between pet and words around was as expected:
ms=word2vec_model.most_similar('pet')
('pets', 0.771199643611908)
('Pet', 0.723974347114563)
('dog', 0.7164785265922546)
('puppy', 0.6972636580467224)
('cat', 0.6891531348228455)
('cats', 0.6719794869422913)
('pooch', 0.6579219102859497)
('Pets', 0.636363685131073)
('animal', 0.6338439583778381)
('dogs', 0.6224827170372009)
This is the distribution of the nearest words:
I would like to get your advice about the following:
Is this dataset appropriate to proceed with this model?
Is the length of the dataset enough to allow word2vec "learn" the relationships between the words?
What can I do to improve the model to make word2vec create relationships of the same type as GoogleNews where for instance word pet is correctly set among similar words?
Is it feasible to implement another alternative such as fasttext considering the nature of the current dataset?
Do you know any public dataset that can be used along with the current dataset to create those relationships?
Thanks
3500 texts (company names) of just ~3 words each is only around 10k total training words, with a much smaller vocabulary of unique words.
That's very, very small for word2vec & related algorithms, which rely on lots of data, and sufficiently-varied data, to train-up useful vector arrangements.
You may be able to squeeze some meaningful training from limited data by using far more training epochs than the default epochs=5, and far smaller vectors than the default size=100. With those sorts of adjustments, you may start to see more meaningful most_similar() results.
But, it's unclear that word2vec, and specifically word2vec in your averaging-of-a-name's-words comparisons, is matched to your end goals.
Word2vec needs lots of data, doesn't look at subword units, and can't say anything about word-tokens not seen during training. An average-of-many-word-vectors can often work as an easy baseline for comparing multiword texts, but might also dilute some word's influence compared to other methods.
Things to consider might include:
Word2vec-related algorithms like FastText that also learn vectors for subword units, and can thus bootstrap not-so-bad guess vectors for words not seen in training. (But, these are also data hungry, and to use on a small dataset you'd again want to reduce vector size, increase epochs, and additionally shrink the number of buckets used for subword learning.)
More sophisticated comparisons of multi-word texts, like "Word Mover's Distance". (That can be quite expensive on longer texts, but for names/titles of just a few words may be practical.)
Finding more data that's compatible with your aims for a stronger model. A larger database of company names might help. If you just want your analysis to understand English words/roots, more generic training texts might work too.
For many purposes, a mere lexicographic comparison - edit distances, count of shared character-n-grams – may be helpful too, though it won't detect all synonyms/semantically-similar words.
Word2vec does not generalize to unseen words.
It does not even work well for wards that are seen but rare. It really depends on having many many examples of word usage. Furthermore a you need enough context left and right, but you only use company names - these are too short. That is likely why your embeddings perform so poorly: too little data and too short texts.
Hence, it is the wrong approach for you. Retraining the model with the new company name is not enough - you still only have one data point. You may as well leave out unseen words, word2vec cannot work better than that even if you retrain.
If you only want to compute similarity between words, probably you don't need to insert new words in your vocabulary.
By eye, I think you can also use FastText without the need to stem the words. It also computes vectors for unknown words.
From FastText FAQ:
One of the key features of fastText word representation is its ability
to produce vectors for any words, even made-up ones. Indeed, fastText
word vectors are built from vectors of substrings of characters
contained in it. This allows to build vectors even for misspelled
words or concatenation of words.
FastText seems to be useful for your purpose.
For your task, you can follow FastText supervised tutorial.
If your corpus proves to be too small, you can build your model starting from availaible pretrained vectors (pretrainedVectors parameter).
I am researching what features I'll have for my machine learning model, with the data I have. My data contains a lot of textdata, so I was wondering how to extract valuable features from it. Contrary to my previous belief, this often consists of representation with Bag-of-words, or something like word2vec: (http://scikit-learn.org/stable/modules/feature_extraction.html#text-feature-extraction)
Because my understanding of the subject is limited, I dont understand why I can't analyze the text first to get numeric values. (for example: textBlob.sentiment =https://textblob.readthedocs.io/en/dev/, google Clouds Natural Language =https://cloud.google.com/natural-language/)
Are there problems with this, or could I use these values as features for my machine learning model?
Thanks in advance for all the help!
Of course, you can convert text input single number with sentiment analysis then use this number as a feature in your machine learning model. Nothing wrong with this approach.
The question is what kind of information you want to extract from text data. Because sentiment analysis convert text input to a number between -1 to 1 and the number represents how positive or negative the text is. For example, you may want sentiment information of the customers' comments about a restaurant to measure their satisfaction. In this case, it is fine to use sentiment analysis to preprocess text data.
But again, sentiment analysis is only given an idea about how positive or negative text is. You may want to cluster text data and sentiment information is not useful in this case since it does not provide any information about the similarity of texts. Thus, other approaches such as word2vec or bag-of-words will be used for the representation of text data in those tasks. Because those algorithms provide vector representation of the text instance of a single number.
In conclusion, the approach depends on what kind of information you need to extract from data for your specific task.
I have a data that represents comments from the operator on various activities performed on a industrial device. The comments, could reflect either a routine maintainence/replacement activity or could represent that some damage occured and it had to be repaired to rectify the damage.
I have a set of 200,000 sentences that needs to be classified into two buckets - Repair/Scheduled Maintainence(or undetermined). These have no labels, hence looking for an unsupervised learning based solution.
Some sample data is as shown below:
"Motor coil damaged .Replaced motor"
"Belt cracks seen. Installed new belt"
"Occasional start up issues. Replaced switches"
"Replaced belts"
"Oiling and cleaning done".
"Did a preventive maintainence schedule"
The first three sentences have to be labeled as Repair while the second three as Scheduled maintainence.
What would be a good approach to this problem. though I have some exposure to Machine learning I am new to NLP based machine learning.
I see many papers related to this https://pdfs.semanticscholar.org/a408/d3b5b37caefb93629273fa3d0c192668d63c.pdf
https://arxiv.org/abs/1611.07897
but wanted to understand if there is any standard approach to such problems
Seems like you could use some reliable keywords (verbs it seems in this case) to create training samples for an NLP Classifier. Or you could use KMeans or KMedioids clustering and use 2 as K, which would do a pretty good job of separating the set. If you want to get really involved, you could use something like Latent Derichlet Allocation, which is a form of unsupervised topic modeling. However, for a problem like this, on the small amount of data you have, the fancier you get the more frustrated with the results you will become IMO.
Both OpenNLP and StanfordNLP have text classifiers for this, so I recommend the following if you want to go the classification route:
- Use key word searches to produce a few thousand examples of your two categories
- Put those sentences in a file with a label based on the OpenNLP format (label |space| sentence | newline )
- Train a classifier with the OpenNLP DocumentClassifier, and I recommend stemming for one of your feature generators
- after you have the model, use it in Java and classify each sentence.
- Keep track of the scores, and quarantine low scores (you will have ambiguous classes I'm sure)
If you don't want to go that route, I recommend using a text indexing technology de-jeur like SOLR or ElasticSearch or your favorite RDBMS's text indexing to perform a "More like this" type function so you don't have to play the Machine learning continuous model updating game.
I'm trying to classify some data using knime with knime-labs deep learning plugin.
I have about 16.000 products in my DB, but I have about 700 of then that I know its category.
I'm trying to classify as much as possible using some DM (data mining) technique. I've downloaded some plugins to knime, now I have some deep learning tools as some text tools.
Here is my workflow, I'll use it to explain what I'm doing:
I'm transforming the product name into vector, than applying into it.
After I train a DL4J learner with DeepMLP. (I'm not really understand it all, it was the one that I thought I got the best results). Than I try to apply the model in the same data set.
I thought I would get the result with the predicted classes. But I'm getting a column with output_activations that looks that gets a pair of doubles. when sorting this column I get some related date close to each other. But I was expecting to get the classes.
Here is a print of the result table, here you can see the output with the input.
In columns selection it's getting just the converted_document and selected des_categoria as Label Column (learning node config). And in Predictor node I checked the "Append SoftMax Predicted Label?"
The nom_produto is the text column that I'm trying to use to predict the des_categoria column that it the product category.
I'm really newbie about DM and DL. If you could get me some help to solve what I'm trying to do would be awesome. Also be free to suggest some learning material about what attempting to achieve
PS: I also tried to apply it into the unclassified data (17,000 products), but I got the same result.
I won't answer with a workflow on this one because it is not going to be a simple one. However, be sure to find the text mining example on the KNIME server, i.e. the one that makes use of the bag of words approach.
The task
Product mapping to categories should be a straight-forward data mining task because the information that explains the target variable is available in a quasi-exhaustive manner. Depending on the number of categories to train though, there is a risk that you might need more than 700 instances to learn from.
Some resources
Here are some resources, only the first one being truly specialised in text mining:
Introduction on Information Retrieval, in particular chapter 13;
Data Science for Business is an excellent introduction to data mining, including text mining (chapter 10), also do not forget the chapter about similarity (chapter 6);
Machine Learning with R has the advantage of being accessible enough (chapter 4 provides an example of text classification with R code).
Preprocessing
First, you will have to preprocess your product labels a bit. Use KNIME's text analytics preprocessing nodes for that purpose, that is after you've transformed the product labels with Strings to Document:
Case Convert, Punctuation Erasure and Snowball Stemmer;
you probably won't need Stop Word Filter, however, there may be quasi-stop words such as "product", which you may need to remove manually with Dictionary Filter;
Be careful not to use any of the following without testing testing their impact first: N Chars Filter (g may be a useful word), Number Filter (numbers may indicate quantities, which may be useful for classification).
Should you encounter any trouble with the relevant nodes (e.g. Punctuation Erasure can be tricky amazingly thanks to the tokenizer), you can always apply String Manipulation with regex before converting the Strings to Document.
Keep it short and simple: the lookup table
You could build a lookup table based on the 700 training instances. The book Data mining techniques as well as resource (2) present this approach in some detail. If any model performs any worse than the lookup table, you should abandon the model.
Nearest neighbors
Neural networks are probably overkill for this task.
Start with a K Nearest Neighbor node (applying a string distance such as Cosine, Levensthein or Jaro-Winkler). This approach requires the least amount of data wrangling. At the very least, it will provide an excellent baseline model, so it is most definitely worth a shot.
You'll need to tune the parameter k and to experiment with the distance types. The Parameter Optimization Loop pair will help you with optimizing k, you can include a Cross-Validation meta node inside of the said loop to obtain an estimate of the expected performance given k instead of only one point estimate per value of k. Use Cohen's Kappa as an optimization criterion, as proposed by the resource number (3) and available via the Scorer node.
After the parameter tuning, you'll have to evaluate the relevance of your model using yet another Cross-Validation meta node, then follow up with a Loop pair including Scorer to calculate the descriptives on performance metric(s) per iteration, finally use Statistics. Kappa is a convenient metric for this task because the target variable consists of many product categories.
Don't forget to test its performance against the lookup table.
What next ?
Should lookup table or k-nn work well for you, then there's nothing else to add.
Should any of those approaches fail, you might want to analyse the precise cases on which it fails. In addition, training set size may be too low, so you could manually classify another few hundred or thousand instances.
If after increasing the training set size, you are still dealing with a bad model, you can try the bag of words approach together with a Naive Bayes classifier (see chapter 13 of the Information Retrieval reference). There is no room here to elaborate on the bag of words approach and Naive Bayes but you'll find the resources here above useful for that purpose.
One last note. Personally, I find KNIME's Naive Bayes node to perform poorly, probably because it does not implement Laplace smoothening. However, KNIME's R Learner and R Predictor nodes will allow you to use R's e1071 package, as demonstrated by resource (3).