How to calculate checksum for example below? - checksum

Trying to read data from digital IO to serial board and get the result as below
Col B,C,D & E represent the inputs in hex, total 16 inputs.
I believe column F and column G (last to hex) are the checksum but couldn't figure out how to calculate them
The worst part is when the value getting bigger, column F become 7.
Need help/clue on how to calculate the checksum.

G is a simple xor of the four values.
Edit: not quite, only while F =0..

Related

if (freq) x$counts else x$density length > 1 and only the first element will be used

for my thesis I have to calculate the number of workers at risk of substitution by machines. I have calculated the probability of substitution (X) and the number of employee at risk (Y) for each occupation category. I have a dataset like this:
X Y
1 0.1300 0
2 0.1000 0
3 0.0841 1513
4 0.0221 287
5 0.1175 3641
....
700 0.9875 4000
I tried to plot a histogram with this command:
hist(dataset1$X,dataset1$Y,xlim=c(0,1),ylim=c(0,30000),breaks=100,main="Distribution",xlab="Probability",ylab="Number of employee")
But I get this error:
In if (freq) x$counts else x$density
length > 1 and only the first element will be used
Can someone tell me what is the problem and write me the right command?
Thank you!
It is worth pointing out that the message displayed is a Warning message, and should not prevent the results being plotted. However, it does indicate there are some issues with the data.
Without the full dataset, it is not 100% obvious what may be the problem. I believe it is caused by the data not being in the correct format, with two potential issues. Firstly, some values have a value of 0, and these won't be plotted on the histogram. Secondly, the observations appear to be inconsistently spaced.
Histograms are best built from one of two datasets:
A dataframe which has been aggregated grouped into consistently sized bins.
A list of values X which in the data
I prefer the second technique. As originally shown here The expandRows() function in the package splitstackshape can be used to repeat the number of rows in the dataframe by the number of observations:
set.seed(123)
dataset1 <- data.frame(X = runif(900, 0, 1), Y = runif(900, 0, 1000))
library(splitstackshape)
dataset2 <- expandRows(dataset1, "Y")
hist(dataset2$X, xlim=c(0,1))
dataset1$bins <- cut(dataset1$X, breaks = seq(0,1,0.01), labels = FALSE)

Histogram calculation in julia-lang

refer to julia-lang documentations :
hist(v[, n]) → e, counts
Compute the histogram of v, optionally using approximately n bins. The return values are a range e, which correspond to the edges of the bins, and counts containing the number of elements of v in each bin. Note: Julia does not ignore NaN values in the computation.
I choose a sample range of data
testdata=0:1:10;
then use hist function to calculate histogram for 1 to 5 bins
hist(testdata,1) # => (-10.0:10.0:10.0,[1,10])
hist(testdata,2) # => (-5.0:5.0:10.0,[1,5,5])
hist(testdata,3) # => (-5.0:5.0:10.0,[1,5,5])
hist(testdata,4) # => (-5.0:5.0:10.0,[1,5,5])
hist(testdata,5) # => (-2.0:2.0:10.0,[1,2,2,2,2,2])
as you see when I want 1 bin it calculates 2 bins, and when I want 2 bins it calculates 3.
why does this happen?
As the person who wrote the underlying function: the aim is to get bin widths that are "nice" in terms of a base-10 counting system (i.e. 10k, 2×10k, 5×10k). If you want more control you can also specify the exact bin edges.
The key word in the doc is approximate. You can check what hist is actually doing for yourself in Julia's base module here.
When you do hist(test,3), you're actually calling
hist(v::AbstractVector, n::Integer) = hist(v,histrange(v,n))
That is, in a first step the n argument is converted into a FloatRange by the histrange function, the code of which can be found here. As you can see, the calculation of these steps is not entirely straightforward, so you should play around with this function a bit to figure out how it is constructing the range that forms the basis of the histogram.

What does this CRC implementation mean by having a seed value?

I am trying to implement a CRC algorithm in Verilog for the SENT sensor protocol.
In a document put out by the SAE, they say their CRC uses the generator polynomial
x^4 + x^3 + x^2 + 1 and a seed value of 0101. I understand the basic concept of calculating a CRC using XOR division and saving the remainder, but everytime I try to compute a CRC I get the wrong answer.
I know this because in the same document they have a list of examples with data bits and the corresponding checksum.
For example, the series of hex values x"73E73E" has checksum 15 and the series x"748748" has checksum 3. Is there anyone who can arrive at these values using the information above? If so, how did you do it?
This is a couple of sentences copied from the document: "The CRC checksum can be implemented as a series of shift left by 4 (multiply by 16) followed by a 256 element array lookup. The checksum is determined by using all data nibbles in sequence and then checksumming the result with an
extra zero value."
Take a look at RevEng, which can determine the CRC parameters from examples (it would need more examples than you have provided).
The seed is simply the initial value of your crc calculation. It is usual to have a non-zero seed to avoid the crc result being zero in the case of all zero data
I just had to find out the same thing. I was checking a CRC implementation for the CRC algorithm which was cryptic albeit working. So I wanted to get the "normal" CRC algorithm to give me the same numbers so I could refactor without problems.
For the numbers you gave I get 0x73E73E => 12, 0x748748 => 3.
As you can read in Koopman the seed value "Prevents all-zero data word from resulting in all-zero check sequence".
I wrote my standard implementation using the algorithm from Wikipedia in Python:
def nCRCcalc( poly, data, crc, n):
crctemp = ( data << n ) | crc
# data width assumed to be 32 bits
shift = 32
while shift > n:
shift = shift - 1
mask = 1 << shift
if mask & crctemp:
crctemp = crctemp ^ ( poly << (shift - n) )
return crctemp
Poly is the polynomial, data is the data, crc is the seed value and n is the number of bits. So In this case Polynomial is 29, crc is 5 and n is 4.
You might need to reverse nibble order, depending on in which format you receive your data. Also this is obviously not the implementation with the table, just for checking.

Error correction on a short decimal number

I have short, variable length decimal numbers, like: #41551, that are manually transcribed by humans. Mistyping one will cause undesirable results, so my first thought is to use the Luhn algorithm to add a checksum -- #41551-3. However, that will only detect an error, not correct it. It seems adding another check digit should be able to detect and correct a single-digit error, so given #41515-3? (a transposition error) I'd be able to recover the correct #41551.
Something like a Hamming code seems like the right place to look, but I haven't been able to figure out how to apply them to decimal, instead of binary, data. Is there an algorithm intended for this use, or can Hamming/Reed-Solomon etc be adapted to this situation?
Yes, you can use Hamming codes in addition with check equations for correction. Use summation of data modulo 10 for finding check digits. Place check digits in 1,2,4,8, ... positions.
I can only provide an algorithm with FIVE extra digits.
Note: 5 original digits is really a worst case.
With FIVE extra digits you can do ECC for up to 11 original digits.
This like classical ECC calculations but in decimal:
Original (decimal) 5-digit number: o0,o1,o2,o3,o4
Distribute digits to positions 0..9 in the following manner:
0 1 2 3 4 5 6 7 8 9
o0 o1 o2 o3 o4
c4 c0 c1 c2 c3 <- will be calculated check digits
Calculate digits at positions 1,2,4,8 like this:
c0, pos 1: (10 - (Sum positions 3,5,7,9)%10)%10
c1, pos 2: (10 - (Sum positions 3,6,7)%10)%10
c2, pos 4: (10 - (Sum positions 5,6,7)%10)%10
c3, pos 8: (10 - (Sum positions 9)%10)%10
AFTER this calculation, calculate digit at position:
c4, pos 0: (10 - (Sum positions 1..9)%10)%10
You might then reshuffle like this:
o0o1o2o3o4-c0c1c2c3c4
To check write all digits in the following order:
0 1 2 3 4 5 6 7 8 9
c4 c0 c1 o0 c2 o1 o2 o3 c3 o4
Then calculate:
c0' = (Sum positions 1,3,5,7,9)%10
c1' = (Sum positions 2,3,6,7)%10
c2' = (Sum positions 4,5,6,7)%10
c3' = (Sum positions 8,9)%10
c4' = (Sum all positions)%10
If c0',c1',c2',c3',c4' are all zero then there is no error.
If there are some c[0..3]' which are non-zero and ALL of the non-zero
c[0..3]' have the value c4', then there is an error in one digit.
You can calculate the position of the erroneous digit and correct.
(Exercise left to the reader).
If c[0..3]' are all zero and only c4' is unequal zero, then you have a one digit error in c4.
If a c[0..3]' is unequal zero and has a different value than c4' then you have (at least) an uncorrectable double error in two digits.
I tried to use Reed-Solomon, generating a 3-digit code that can correct up to 1 digit: https://epxx.co/artigos/edc2_en.html

linear transformation function

I need to write a function that takes 4 bytes as input, performs a reversible linear transformation on this, and returns it as 4 bytes.
But wait, there is more: it also has to be distributive, so changing one byte on the input should affect all 4 output bytes.
The issues:
if I use multiplication it won't be reversible after it is modded 255 via the storage as a byte (and its needs to stay as a byte)
if I use addition it can't be reversible and distributive
One solution:
I could create an array of bytes 256^4 long and fill it in, in a one to one mapping, this would work, but there are issues: this means I have to search a graph of size 256^8 due to having to search for free numbers for every value (should note distributivity should be sudo random based on a 64*64 array of byte). This solution also has the MINOR (lol) issue of needing 8GB of RAM, making this solution nonsense.
The domain of the input is the same as the domain of the output, every input has a unique output, in other words: a one to one mapping. As I noted on "one solution" this is very possible and I have used that method when a smaller domain (just 256) was in question. The fact is, as numbers get big that method becomes extraordinarily inefficient, the delta flaw was O(n^5) and omega was O(n^8) with similar crappiness in memory usage.
I was wondering if there was a clever way to do it. In a nutshell, it's a one to one mapping of domain (4 bytes or 256^4). Oh, and such simple things as N+1 can't be used, it has to be keyed off a 64*64 array of byte values that are sudo random but recreatable for reverse transformations.
Balanced Block Mixers are exactly what you're looking for.
Who knew?
Edit! It is not possible, if you indeed want a linear transformation. Here's the mathy solution:
You've got four bytes, a_1, a_2, a_3, a_4, which we'll think of as a vector a with 4 components, each of which is a number mod 256. A linear transformation is just a 4x4 matrix M whose elements are also numbers mod 256. You have two conditions:
From Ma, we can deduce a (this means that M is an invertible matrix).
If a and a' differ in a single coordinate, then Ma and Ma' must differ in every coordinate.
Condition (2) is a little trickier, but here's what it means. Since M is a linear transformation, we know that
M(a - a) = Ma - Ma'
On the left, since a and a' differ in a single coordinate, a - a has exactly one nonzero coordinate. On the right, since Ma and Ma' must differ in every coordinate, Ma - Ma' must have every coordinate nonzero.
So the matrix M must take a vector with a single nonzero coordinate to one with all nonzero coordinates. So we just need every entry of M to be a non-zero-divisor mod 256, i.e., to be odd.
Going back to condition (1), what does it mean for M to be invertible? Since we're considering it mod 256, we just need its determinant to be invertible mod 256; that is, its determinant must be odd.
So you need a 4x4 matrix with odd entries mod 256 whose determinant is odd. But this is impossible! Why? The determinant is computed by summing various products of entries. For a 4x4 matrix, there are 4! = 24 different summands, and each one, being a product of odd entries, is odd. But the sum of 24 odd numbers is even, so the determinant of such a matrix must be even!
Here are your requirements as I understand them:
Let B be the space of bytes. You want a one-to-one (and thus onto) function f: B^4 -> B^4.
If you change any single input byte, then all output bytes change.
Here's the simplest solution I have thusfar. I have avoided posting for a while because I kept trying to come up with a better solution, but I haven't thought of anything.
Okay, first of all, we need a function g: B -> B which takes a single byte and returns a single byte. This function must have two properties: g(x) is reversible, and x^g(x) is reversible. [Note: ^ is the XOR operator.] Any such g will do, but I will define a specific one later.
Given such a g, we define f by f(a,b,c,d) = (a^b^c^d, g(a)^b^c^d, a^g(b)^c^d, a^b^g(c)^d). Let's check your requirements:
Reversible: yes. If we XOR the first two output bytes, we get a^g(a), but by the second property of g, we can recover a. Similarly for the b and c. We can recover d after getting a,b, and c by XORing the first byte with (a^b^c).
Distributive: yes. Suppose b,c, and d are fixed. Then the function takes the form f(a,b,c,d) = (a^const, g(a)^const, a^const, a^const). If a changes, then so will a^const; similarly, if a changes, so will g(a), and thus so will g(a)^const. (The fact that g(a) changes if a does is by the first property of g; if it didn't then g(x) wouldn't be reversible.) The same holds for b and c. For d, it's even easier because then f(a,b,c,d) = (d^const, d^const, d^const, d^const) so if d changes, every byte changes.
Finally, we construct such a function g. Let T be the space of two-bit values, and h : T -> T the function such that h(0) = 0, h(1) = 2, h(2) = 3, and h(3) = 1. This function has the two desired properties of g, namely h(x) is reversible and so is x^h(x). (For the latter, check that 0^h(0) = 0, 1^h(1) = 3, 2^h(2) = 1, and 3^h(3) = 2.) So, finally, to compute g(x), split x into four groups of two bits, and take h of each quarter separately. Because h satisfies the two desired properties, and there's no interaction between the quarters, so does g.
I'm not sure I understand your question, but I think I get what you're trying to do.
Bitwise Exclusive Or is your friend.
If R = A XOR B, R XOR A gives B and R XOR B gives A back. So it's a reversible transformation, assuming you know the result and one of the inputs.
Assuming I understood what you're trying to do, I think any block cipher will do the job.
A block cipher takes a block of bits (say 128) and maps them reversibly to a different block with the same size.
Moreover, if you're using OFB mode you can use a block cipher to generate an infinite stream of pseudo-random bits. XORing these bits with your stream of bits will give you a transformation for any length of data.
I'm going to throw out an idea that may or may not work.
Use a set of linear functions mod 256, with odd prime coefficients.
For example:
b0 = 3 * a0 + 5 * a1 + 7 * a2 + 11 * a3;
b1 = 13 * a0 + 17 * a1 + 19 * a2 + 23 * a3;
If I remember the Chinese Remainder Theorem correctly, and I haven't looked at it in years, the ax are recoverable from the bx. There may even be a quick way to do it.
This is, I believe, a reversible transformation. It's linear, in that af(x) mod 256 = f(ax) and f(x) + f(y) mod 256 = f(x + y). Clearly, changing one input byte will change all the output bytes.
So, go look up the Chinese Remainder Theorem and see if this works.
What you mean by "linear" transformation?
O(n), or a function f with f(c * (a+b)) = c * f(a) + c * f(b)?
An easy approach would be a rotating bitshift (not sure if this fullfils the above math definition). Its reversible and every byte can be changed. But with this it does not enforce that every byte is changed.
EDIT: My solution would be this:
b0 = (a0 ^ a1 ^ a2 ^ a3)
b1 = a1 + b0 ( mod 256)
b2 = a2 + b0 ( mod 256)
b3 = a3 + b0 ( mod 256)
It would be reversible (just subtract the first byte from the other, and then XOR the 3 resulting bytes on the first), and a change in one bit would change every byte (as b0 is the result of all bytes and impacts all others).
Stick all of the bytes into 32-bit number and then do a shl or shr (shift left or shift right) by one, two or three. Then split it back into bytes (could use a variant record). This will move bits from each byte into the adjacent byte.
There are a number of good suggestions here (XOR, etc.) I would suggest combining them.
You could remap the bits. Let's use ii for input and oo for output:
oo[0] = (ii[0] & 0xC0) | (ii[1] & 0x30) | (ii[2] & 0x0C) | (ii[3] | 0x03)
oo[1] = (ii[0] & 0x30) | (ii[1] & 0x0C) | (ii[2] & 0x03) | (ii[3] | 0xC0)
oo[2] = (ii[0] & 0x0C) | (ii[1] & 0x03) | (ii[2] & 0xC0) | (ii[3] | 0x30)
oo[3] = (ii[0] & 0x03) | (ii[1] & 0xC0) | (ii[2] & 0x30) | (ii[3] | 0x0C)
It's not linear, but significantly changing one byte in the input will affect all the bytes in the output. I don't think you can have a reversible transformation such as changing one bit in the input will affect all four bytes of the output, but I don't have a proof.

Resources