The location of EIP and other registers in x86 - memory

I am working with x86 instructions and now I'm confused about where the x86 registers (Like EIP, ESP, etc.) are stored
For example when I use ollydbg I could see what is the actual EIP register alue and how it changes.
If they're stored in memory then where is the actual location? (For example in .data .text or .bss)
And can I change the EIP of another process manually? How?

You have a severe misconception about what a register is.
A register is actually a register, ie. a really small piece of memory in the processor that can contain the operands or can be the target of a CPU instruction. It doesn't have an address in memory - it's really adressable as the register it is.
RAM is something totally different – an x86 program can work completely without RAM, but there's no operation that doesn't work on registers. For example, to add two numbers that are somewhere in RAM, you use LOAD instructions to load these two numbers into two register, and then some ADD instruction to add one number to the other, targeting a register, and then there's some STORE instruction that takes the register value and writes it to some address in RAM.
So, there's no "process-specific" registers. Every CPU core has exactly one set of registers (some specialities like virtualization nonwithstanding), and there's mechanisms to store registers in RAM, and restore them from RAM, for example when calling a function or switching contextes.

Registers are stored in registers, not in the process's own memory.
Debuggers use a special interface provided by the OS to change registers of a running process, including EIP. In Linux, it's the ptrace(2) API.
Being able to change a process's registers from outside the process is related to how the OS saves a process's architectural state to memory for context switches.

Related

Operating Systems: Processes, Pagination and Memory Allocation doubts

I have several doubts about processes and memory management. List the main. I'm slowly trying to solve them by myself but I would still like some help from you experts =).
I understood that the data structures associated with a process are more or less these:
text, data, stack, kernel stack, heap, PCB.
If the process is created but the LTS decides to send it to secondary memory, are all the data structures copied for example on SSD or maybe just text and data (and PCB in kernel space)?
Pagination allows you to allocate processes in a non-contiguous way:
How does the kernel know if the process is trying to access an illegal memory area? After not finding the index on the page table, does the kernel realize that it is not even in virtual memory (secondary memory)? If so, is an interrupt (or exception) thrown? Is it handled immediately or later (maybe there was a process switch)?
If the processes are allocated non-contiguously, how does the kernel realize that there has been a stack overflow since the stack typically grows down and the heap up? Perhaps the kernel uses virtual addresses in PCBs as memory pointers that are contiguous for each process so at each function call it checks if the VIRTUAL pointer to the top of the stack has touched the heap?
How do programs generate their internal addresses? For example, in the case of virtual memory, everyone assumes starting from the address 0x0000 ... up to the address 0xffffff ... and is it then up to the kernel to proceed with the mapping?
How did the processes end? Is the system call exit called both in case of normal termination (finished last instruction) and in case of killing (by the parent process, kernel, etc.)? Does the process itself enter kernel mode and free up its associated memory?
Kernel schedulers (LTS, MTS, STS) when are they invoked? From what I understand there are three types of kernels:
separate kernel, below all processes.
the kernel runs inside the processes (they only change modes) but there are "process switching functions".
the kernel itself is based on processes but still everything is based on process switching functions.
I guess the number of pages allocated the text and data depend on the "length" of the code and the "global" data. On the other hand, is the number of pages allocated per heap and stack variable for each process? For example I remember that the JVM allows you to change the size of the stack.
When a running process wants to write n bytes in memory, does the kernel try to fill a page already dedicated to it and a new one is created for the remaining bytes (so the page table is lengthened)?
I really thank those who will help me.
Have a good day!
I think you have lots of misconceptions. Let's try to clear some of these.
If the process is created but the LTS decides to send it to secondary memory, are all the data structures copied for example on SSD or maybe just text and data (and PCB in kernel space)?
I don't know what you mean by LTS. The kernel can decide to send some pages to secondary memory but only on a page granularity. Meaning that it won't send a whole text segment nor a complete data segment but only a page or some pages to the hard-disk. Yes, the PCB is stored in kernel space and never swapped out (see here: Do Kernel pages get swapped out?).
How does the kernel know if the process is trying to access an illegal memory area? After not finding the index on the page table, does the kernel realize that it is not even in virtual memory (secondary memory)? If so, is an interrupt (or exception) thrown? Is it handled immediately or later (maybe there was a process switch)?
On x86-64, each page table entry has 12 bits reserved for flags. The first (right-most bit) is the present bit. On access to the page referenced by this entry, it tells the processor if it should raise a page-fault. If the present bit is 0, the processor raises a page-fault and calls an handler defined by the OS in the IDT (interrupt 14). Virtual memory is not secondary memory. It is not the same. Virtual memory doesn't have a physical medium to back it. It is a concept that is, yes implemented in hardware, but with logic not with a physical medium. The kernel holds a memory map of the process in the PCB. On page fault, if the access was not within this memory map, it will kill the process.
If the processes are allocated non-contiguously, how does the kernel realize that there has been a stack overflow since the stack typically grows down and the heap up? Perhaps the kernel uses virtual addresses in PCBs as memory pointers that are contiguous for each process so at each function call it checks if the VIRTUAL pointer to the top of the stack has touched the heap?
The processes are allocated contiguously in the virtual memory but not in physical memory. See my answer here for more info: Each program allocates a fixed stack size? Who defines the amount of stack memory for each application running?. I think stack overflow is checked with a page guard. The stack has a maximum size (8MB) and one page marked not present is left underneath to make sure that, if this page is accessed, the kernel is notified via a page-fault that it should kill the process. In itself, there can be no stack overflow attack in user mode because the paging mechanism already isolates different processes via the page tables. The heap has a portion of virtual memory reserved and it is very big. The heap can thus grow according to how much physical space you actually have to back it. That is the size of the swap file + RAM.
How do programs generate their internal addresses? For example, in the case of virtual memory, everyone assumes starting from the address 0x0000 ... up to the address 0xffffff ... and is it then up to the kernel to proceed with the mapping?
The programs assume an address (often 0x400000) for the base of the executable. Today, you also have ASLR where all symbols are kept in the executable and determined at load time of the executable. In practice, this is not done much (but is supported).
How did the processes end? Is the system call exit called both in case of normal termination (finished last instruction) and in case of killing (by the parent process, kernel, etc.)? Does the process itself enter kernel mode and free up its associated memory?
The kernel has a memory map for each process. When the process dies via abnormal termination, the memory map is crossed and cleared off of that process's use.
Kernel schedulers (LTS, MTS, STS) when are they invoked?
All your assumptions are wrong. The scheduler cannot be called otherwise than with a timer interrupt. The kernel isn't a process. There can be kernel threads but they are mostly created via interrupts. The kernel starts a timer at boot and, when there is a timer interrupt, the kernel calls the scheduler.
I guess the number of pages allocated the text and data depend on the "length" of the code and the "global" data. On the other hand, is the number of pages allocated per heap and stack variable for each process? For example I remember that the JVM allows you to change the size of the stack.
The heap and stack have portions of virtual memory reserved for them. The text/data segment start at 0x400000 and end wherever they need. The space reserved for them is really big in virtual memory. They are thus limited by the amount of physical memory available to back them. The JVM is another thing. The stack in JVM is not the real stack. The stack in JVM is probably heap because JVM allocates heap for all the program's needs.
When a running process wants to write n bytes in memory, does the kernel try to fill a page already dedicated to it and a new one is created for the remaining bytes (so the page table is lengthened)?
The kernel doesn't do that. On Linux, the libstdc++/libc C++/C implementation does that instead. When you allocate memory dynamically, the C++/C implementation keeps track of the allocated space so that it won't request a new page for a small allocation.
EDIT
Do compiled (and interpreted?) Programs only work with virtual addresses?
Yes they do. Everything is a virtual address once paging is enabled. Enabling paging is done via a control register set at boot by the kernel. The MMU of the processor will automatically read the page tables (among which some are cached) and will translate these virtual addresses to physical ones.
So do pointers inside PCBs also use virtual addresses?
Yes. For example, the PCB on Linux is the task_struct. It holds a field called pgd which is an unsigned long*. It will hold a virtual address and, when dereferenced, it will return the first entry of the PML4 on x86-64.
And since the virtual memory of each process is contiguous, the kernel can immediately recognize stack overflows.
The kernel doesn't recognize stack overflows. It will simply not allocate more pages to the stack then the maximum size of the stack which is a simple global variable in the Linux kernel. The stack is used with push pops. It cannot push more than 8 bytes so it is simply a matter of reserving a page guard for it to create page-faults on access.
however the scheduler is invoked from what I understand (at least in modern systems) with timer mechanisms (like round robin). It's correct?
Round-robin is not a timer mechanism. The timer is interacted with using memory mapped registers. These registers are detected using the ACPI tables at boot (see my answer here: https://cs.stackexchange.com/questions/141870/when-are-a-controllers-registers-loaded-and-ready-to-inform-an-i-o-operation/141918#141918). It works similarly to the answer I provided for USB (on the link I provided here). Round-robin is a scheduler priority scheme often called naive because it simply gives every process a time slice and executes them in order which is not currently used in the Linux kernel (I think).
I did not understand the last point. How is the allocation of new memory managed.
The allocation of new memory is done with a system call. See my answer here for more info: Who sets the RIP register when you call the clone syscall?.
The user mode process jumps into a handler for the system call by calling syscall in assembly. It jumps to an address specified at boot by the kernel in the LSTAR64 register. Then the kernel jumps to a function from assembly. This function will do the stuff the user mode process requires and return to the user mode process. This is often not done by the programmer but by the C++/C implementation (often called the standard library) that is a user mode library that is linked against dynamically.
The C++/C standard library will keep track of the memory it allocated by, itself, allocating some memory and by keeping records. Then, if you ask for a small allocation, it will use the pages it already allocated instead of requesting new ones using mmap (on Linux).

what type of memory do registers have?

Accumulator(AC), Data Register(DR), Address Register(AR), Program Counter(PC), Memory Data Register (MDR), Index Register(IR), Memory Buffer Register(MBR)
these are different registers in a compute.
what type of memory are they? random access, read only, or any other?
what type of memory are they?
Registers do not have memory. Registers are storage locations within the CPU.
these are different registers in a computer?
The register set varies among processors.
random access, read-only, or any other?
General purpose registers are read/write. However, there are registers that are generally read only. The processor status register is usually read-only in the sense that you cannot write to it. However, you can change its value through instructions. Some processors might have write-only registers.

memory management and segmentation faults in modern day systems (Linux)

In modern-day operating systems, memory is available as an abstracted resource. A process is exposed to a virtual address space (which is independent from address space of all other processes) and a whole mechanism exists for mapping any virtual address to some actual physical address.
My doubt is:
If each process has its own address space, then it should be free to access any address in the same. So apart from permission restricted sections like that of .data, .bss, .text etc, one should be free to change value at any address. But this usually gives segmentation fault, why?
For acquiring the dynamic memory, we need to do a malloc. If the whole virtual space is made available to a process, then why can't it directly access it?
Different runs of a program results in different addresses for variables (both on stack and heap). Why is it so, when the environments for each run is same? Does it not affect the amount of addressable memory available for usage? (Does it have something to do with address space randomization?)
Some links on memory allocation (e.g. in heap).
The data available at different places is very confusing, as they talk about old and modern times, often not distinguishing between them. It would be helpful if someone could clarify the doubts while keeping modern systems in mind, say Linux.
Thanks.
Technically, the operating system is able to allocate any memory page on access, but there are important reasons why it shouldn't or can't:
different memory regions serve different purposes.
code. It can be read and executed, but shouldn't be written to.
literals (strings, const arrays). This memory is read-only and should be.
the heap. It can be read and written, but not executed.
the thread stack. There is no reason for two threads to access each other's stack, so the OS might as well forbid that. Moreover, the tread stack can be de-allocated when the tread ends.
memory-mapped files. Any changes to this region should affect a specific file. If the file is open for reading, the same memory page may be shared between processes because it's read-only.
the kernel space. Normally the application should not (or can not) access that region - only kernel code can. It's basically a scratch space for the kernel and it's shared between processes. The network buffer may reside there, so that it's always available for writes, no matter when the packet arrives.
...
The OS might assume that all unrecognised memory access is an attempt to allocate more heap space, but:
if an application touches the kernel memory from user code, it must be killed. On 32-bit Windows, all memory above 1<<31 (top bit set) or above 3<<30 (top two bits set) is kernel memory. You should not assume any unallocated memory region is in the user space.
if an application thinks about using a memory region but doesn't tell the OS, the OS may allocate something else to that memory (OS: sure, your file is at 0x12341234; App: but I wanted to store my data there). You could tell the OS by touching the end of your array (which is unreliable anyways), but it's easier to just call an OS function. It's just a good idea that the function call is "give me 10MB of heap", not "give me 10MB of heap starting at 0x12345678"
If the application allocates memory by using it then it typically does not de-allocate at all. This can be problematic as the OS still has to hold the unused pages (but the Java Virtual Machine does not de-allocate either, so hey).
Different runs of a program results in different addresses for variables
This is called memory layout randomisation and is used, alongside of proper permissions (stack space is not executable), to make buffer overflow attacks much more difficult. You can still kill the app, but not execute arbitrary code.
Some links on memory allocation (e.g. in heap).
Do you mean, what algorithm the allocator uses? The easiest algorithm is to always allocate at the soonest available position and link from each memory block to the next and store the flag if it's a free block or used block. More advanced algorithms always allocate blocks at the size of a power of two or a multiple of some fixed size to prevent memory fragmentation (lots of small free blocks) or link the blocks in a different structures to find a free block of sufficient size faster.
An even simpler approach is to never de-allocate and just point to the first (and only) free block and holds its size. If the remaining space is too small, throw it away and ask the OS for a new one.
There's nothing magical about memory allocators. All they do is to:
ask the OS for a large region and
partition it to smaller chunks
without
wasting too much space or
taking too long.
Anyways, the Wikipedia article about memory allocation is http://en.wikipedia.org/wiki/Memory_management .
One interesting algorithm is called "(binary) buddy blocks". It holds several pools of a power-of-two size and splits them recursively into smaller regions. Each region is then either fully allocated, fully free or split in two regions (buddies) that are not both fully free. If it's split, then one byte suffices to hold the size of the largest free block within this block.

operating systems memory management - malloc() invocation

I'm studying up on OS memory management, and I wish to verify that I got the basic mechanism of allocation \ virtual memory \ paging straight.
Let's say a process calls malloc(), what happens behind the scenes?
my answer: The runtime library finds an appropriately sized block of memory in its virtual memory address space.
(This is where allocation algorithms such as first-fit, best-fit that deal with fragmentation come into play)
Now let's say the process accesses that memory, how is that done?
my answer: The memory address, as seen by the process, is in fact virtual. The OS checks if that address is currently mapped to a physical memory address and if so performs the access. If it isn't mapped - a page fault is raised.
Am I getting this straight? i.e. the compiler\runtime library are in charge of allocating virtual memory blocks, and the OS is in charge of a mapping between processes' virtual address and physical addresses (and the paging algorithm that entails)?
Thanks!
About right. The memory needs to exist in the virtual memory of the process for a page fault to actually allocate a physical page though. You can't just start poking around anywhere and expect the kernel to put physical memory where you happen to access.
There is much more to it than this. Read up on mmap(), anonymous and not, shared and private. And brk() too. malloc() builds on brk() and mmap().
You've almost got it. The one thing you missed is how the process asks the system for more virtual memory in the first place. As Thomas pointed out, you can't just write where you want. There's no reason an OS couldn't be designed to allow that, but it's much more efficient if it has some idea where you're going to be writing and the space where you do it is contiguous.
On Unixy systems, userland processes have a region called the data segment, which is what it sounds like: it's where the data goes. When a process needs memory for data, it calls brk(), which asks the system to extend the data segment to a specified pointer value. (For example, if your existing data segment was empty and you wanted to extend it to 2M, you'd call brk(0x200000).)
Note that while very common, brk() is not a standard; in fact it was yanked out of POSIX.1 a decade ago because C specifies malloc() and there's no reason to mandate the interface for data segment allocation.

How is external memory, internal memory, and cache organized?

Consider a system as follows: a hardware board having say ARM Cortex-A8 and Neon Vector coprocessor, and Embedded Linux OS running on Cortex-A8. On this environment, if some application - say, a video decoder - is executing, then:
How is it decided which buffers would be in external memory, which ones would be allocated in internal SRAM, etc.
When one calls calloc/malloc on such a system/code, the pointer returned is from which memory: internal or external?
Can a user make buffers to be allocated in the memories of his choice (internal/external)?
In ARM architectures, there is another memory called "tightly coupled memory" (TCM). What is that and how can user enable and use it? Can I declare buffers in this memory?
Do I need to see the memory map (if any) of the hardware board to understand about all these different physical memories present in a typical hardware board?
How much of a role does the OS play in distinguishing these different memories?
Sorry for multiple questions, but i think they all are interlinked.
Please note that I'm not familiar with the ARM nor embedded Linux's specifically, so all of my comments will be from a general point of view.
First, about cache: Very early during boot, the operating system will do some amount of cache initialization. Exactly what this entails will vary from processor to processor, but the net effect is to ensure cache is initialized properly, and then enable its use by the processor. After this, the cache is operated exclusively by the processor with no further interaction by the operating system or your programs.
Now, on to external (off-chip) and internal (on-chip) memories:
The operating system owns all hardware on the system, including the internal and external memories and so is ultimately responsible for discovering, configuring, and allocating these resources within the kernel and to user processes. In a typical system (eg, your desktop or a 1u server) there won't usually be any special internal (on-chip) ram, and so the operating system can treat all dram equally. It will go into a general pool of pages (usually 4k) for allocation to processes, file system buffers, etc. On a system with special memory of various sorts (nvram, high-speed on-chip memory, and a few others), the operating system's general policies aren't usually correct.
How this is presented to the user will depend on choices made while porting the OS to this system.
One could modify the OS to be explicitly aware of this special memory, and provide special system calls to allocate it to to user land processes. However, this could be quite a bit of work unless the embedded linux being used has at least some support for this sort of thing.
The approach I'd probably take would be to avoid modifying the kernel itself, and instead write a device driver for the internal memory. A driver of this sort would typically provide some sort of mmap interface to allow user processes to get simple address-based access to the internal memory.
Here are answers to some of your concrete questions.
How much of a role does the OS play in distinguishing these different memories?
If your system has taken the device driver approach described above, then the OS probably knows only about external memory, or perhaps just enough about the internal memories to initialize them properly although that would likely be in the device driver too, if at all possible. If the OS knows more explicitly about the on-chip memory, then it will definitely contain any needed initialization code, as well as some sort of scheme to provide access to the user processes.
How is it decided which buffers would be in external memory, which ones would be allocated in internal SRAM, etc.
It seems unlikely to me that the operating system would try to automate such choices. Instead, I suspect that either the OS or a device driver would provide a generic interface to provide access to the on-chip memory, and leave it up to your user code to decide what to do with it.
When one calls calloc/malloc on such a system/code, the pointer returned is from which memory: internal or external?
Almost certainly, malloc and friends will return pointers into the general off-chip memory. In the driver-based approach suggested above, you'd use mmap to gain access to the on-chip memory. If you needed to do finer-grained allocation than that, you'd need to write your own allocator, or find one that can be given an explicit region of memory to work in.
Can a user make buffers to be allocated in the memories of his choice (internal/external)?
If by buffers you mean the regions returned from the standard malloc calls, probably not. But, if you mean "can a user program somehow get a pointer to the on-chip memory", then the answer is almost certainly yes, but the mechanism will depend on choices made when porting linux to this system.
In ARM architectures, there is another memory called "tightly coupled memory" (TCM). What is that and how can user enable and use it? Can I declare buffers in this memory?
I don't know what this is. If I had to guess, I'd assume it's just another form of on-chip ram, but since it has a different name, perhaps I'm wrong.
Do I need to see the memory map (if any) of the hardware board to understand about all these different physical memories present in a typical hardware board?
If the OS and/or device drivers have provided some sort of abstract access to these memory regions, then you won't need to know explicitly about the address map. This knowledge is, however, needed to implement this access in either the kernel or a device driver.
I hope this helps somewhat.

Resources