Gradient descent : should delta value be scalar or vector? - machine-learning

When computing the delta values for a neural network after running back propagation :
the value of delta(1) will be a scalar value, it should be a vector ?
Update :
Taken from http://www.holehouse.org/mlclass/09_Neural_Networks_Learning.html
Specifically :

First, you probably understand that in each layer, we have n x m parameters (or weights) that needs to be learned so it forms a 2-d matrix.
n is the number of nodes in the current layer plus 1 (for bias)
m is the number of nodes in the previous layer.
We have n x m parameters because there is one connection between any of the two nodes between the previous and the current layer.
I am pretty sure that Delta (big delta) at layer L is used to accumulate partial derivative terms for every parameter at layer L. So you have a 2D matrix of Delta at each layer as well. To update the i-th row (the i-th node in the current layer) and j-th column (the j-th node in the previous layer) of the matrix,
D_(i,j) = D_(i,j) + a_j * delta_i
note a_j is the activation from the j-th node in previous layer,
delta_i is the error of the i-th node of the current layer
so we accumulate the error proportional to their activation weight.
Thus to answer your question, Delta should be a matrix.

Related

Batch Normalization in Convolutional Neural Network

I am newbie in convolutional neural networks and just have idea about feature maps and how convolution is done on images to extract features. I would be glad to know some details on applying batch normalisation in CNN.
I read this paper https://arxiv.org/pdf/1502.03167v3.pdf and could understand the BN algorithm applied on a data but in the end they mentioned that a slight modification is required when applied to CNN:
For convolutional layers, we additionally want the normalization to obey the convolutional property – so that different elements of the same feature map, at different locations, are normalized in the same way. To achieve this, we jointly normalize all the activations in a mini- batch, over all locations. In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations – so for a mini-batch of size m and feature maps of size p × q, we use the effec- tive mini-batch of size m′ = |B| = m · pq. We learn a pair of parameters γ(k) and β(k) per feature map, rather than per activation. Alg. 2 is modified similarly, so that during inference the BN transform applies the same linear transformation to each activation in a given feature map.
I am total confused when they say
"so that different elements of the same feature map, at different locations, are normalized in the same way"
I know what feature maps mean and different elements are the weights in every feature map. But I could not understand what location or spatial location means.
I could not understand the below sentence at all
"In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations"
I would be glad if someone cold elaborate and explain me in much simpler terms
Let's start with the terms. Remember that the output of the convolutional layer is a 4-rank tensor [B, H, W, C], where B is the batch size, (H, W) is the feature map size, C is the number of channels. An index (x, y) where 0 <= x < H and 0 <= y < W is a spatial location.
Usual batchnorm
Now, here's how the batchnorm is applied in a usual way (in pseudo-code):
# t is the incoming tensor of shape [B, H, W, C]
# mean and stddev are computed along 0 axis and have shape [H, W, C]
mean = mean(t, axis=0)
stddev = stddev(t, axis=0)
for i in 0..B-1:
out[i,:,:,:] = norm(t[i,:,:,:], mean, stddev)
Basically, it computes H*W*C means and H*W*C standard deviations across B elements. You may notice that different elements at different spatial locations have their own mean and variance and gather only B values.
Batchnorm in conv layer
This way is totally possible. But the convolutional layer has a special property: filter weights are shared across the input image (you can read it in detail in this post). That's why it's reasonable to normalize the output in the same way, so that each output value takes the mean and variance of B*H*W values, at different locations.
Here's how the code looks like in this case (again pseudo-code):
# t is still the incoming tensor of shape [B, H, W, C]
# but mean and stddev are computed along (0, 1, 2) axes and have just [C] shape
mean = mean(t, axis=(0, 1, 2))
stddev = stddev(t, axis=(0, 1, 2))
for i in 0..B-1, x in 0..H-1, y in 0..W-1:
out[i,x,y,:] = norm(t[i,x,y,:], mean, stddev)
In total, there are only C means and standard deviations and each one of them is computed over B*H*W values. That's what they mean when they say "effective mini-batch": the difference between the two is only in axis selection (or equivalently "mini-batch selection").
Some clarification on Maxim's answer.
I was puzzled by seeing in Keras that the axis you specify is the channels axis, as it doesn't make sense to normalize over the channels - as every channel in a conv-net is considered a different "feature". I.e. normalizing over all channels is equivalent to normalizing number of bedrooms with size in square feet (multivariate regression example from Andrew's ML course). This is usually not what you want - what you do is normalize every feature by itself. I.e. you normalize the number of bedrooms across all examples to be with mu=0 and std=1, and you normalize the the square feet across all examples to be with mu=0 and std=1.
This is why you want C means and stds, because you want a mean and std per channel/feature.
After checking and testing it myself I realized the issue: there's a bit of a confusion/misconception here. The axis you specify in Keras is actually the axis which is not in the calculations. i.e. you get average over every axis except the one specified by this argument. This is confusing, as it is exactly the opposite behavior of how NumPy works, where the specified axis is the one you do the operation on (e.g. np.mean, np.std, etc.).
I actually built a toy model with only BN, and then calculated the BN manually - took the mean, std across all the 3 first dimensions [m, n_W, n_H] and got n_C results, calculated (X-mu)/std (using broadcasting) and got identical results to the Keras results.
Hope this helps anyone who was confused as I was.
I'm only 70% sure of what I say, so if it does not make sense, please edit or mention it before downvoting.
About location or spatial location: they mean the position of pixels in an image or feature map. A feature map is comparable to a sparse modified version of image where concepts are represented.
About so that different elements of the same feature map, at different locations, are normalized in the same way:
some normalisation algorithms are local, so they are dependent of their close surrounding (location) and not the things far apart in the image. They probably mean that every pixel, regardless of their location, is treated just like the element of a set, independently of it's direct special surrounding.
About In Alg. 1, we let B be the set of all values in a feature map across both the elements of a mini-batch and spatial locations: They get a flat list of every values of every training example in the minibatch, and this list combines things whatever their location is on the feature map.
Firstly we need to make it clear that the depth of a kernel is determined by previous feature map's channel num, and the number of kernel in this layer determins the channel num of next feature map (the next layer).
then we should make it clear that each kernel(three dimentional usually) will generate just one channel of feature map in the next layer.
thirdly we should try to accept the idea of each points in the generated feature map (regardless of their position) are generated by the same kernel, by sliding on previous layer. So they could be seen as a distribution generated by this kernel, and they could be seen as samples of a stochastic variable. Then they should be averaged to obtain the mean and then the variance. (it not rigid, only helps to understand)
This is what they say "so that different elements of the same feature map, at different locations, are normalized in the same way"

BackPropagation Neuron Network Approach - Design

I am trying to make a digit recognition program. I shall feed a white/black image of a digit and my output layer will fire the corresponding digit (one neuron shall fire, out of the 0 -> 9 neurons in the Output Layer). I finished implementing a Two-dimensional BackPropagation Neuron Network. My topology sizes are [5][3] -> [3][3] -> 1[10]. So it's One 2-D Input Layer, One 2-D Hidden Layer and One 1-D Output Layer. However I am getting weird and wrong results (Average Error and Output Values).
Debugging at this stage is kind of time consuming. Therefore, I would love to hear if this is the correct design so I continue debugging. Here are the flow steps of my implementation:
Build the Network: One Bias on each Layer except on the Output Layer (No Bias). A Bias's output value is always = 1.0, however its Connections Weights get updated on each pass like all other neurons in the network. All Weights range 0.000 -> 1.000 (no negatives)
Get Input data (0 | OR | 1) and set nth value as the nth Neuron Output Value in the input layer.
Feed Forward: On each Neuron 'n' in every Layer (except the Input Layer):
Get result of SUM (Output Value * Connection Weight) of connected Neurons
from previous layer towards this nth Neuron.
Get TanHyperbolic - Transfer Function - of this SUM as Results
Set Results as the Output Value of this nth Neuron
Get Results: Take Output Values of Neurons in the Output Layer
BackPropagation:
Calculate Network Error: on the Output Layer, get SUM Neurons' (Target Values - Output Values)^2. Divide this SUM by the size of the Output Layer. Get its SquareRoot as Result. Compute Average Error = (OldAverageError * SmoothingFactor * Result) / (SmoothingFactor + 1.00)
Calculate Output Layer Gradients: for each Output Neuron 'n', nth Gradient = (nth Target Value - nth Output Value) * nth Output Value TanHyperbolic Derivative
Calculate Hidden Layer Gradients: for each Neuron 'n', get SUM (TanHyperbolic Derivative of a weight going from this nth Neuron * Gradient of the destination Neuron) as Results. Assign (Results * this nth Output Value) as the Gradient.
Update all Weights: Starting from the hidden Layer and back to the Input Layer, for nth Neuron: Compute NewDeltaWeight = (NetLearningRate * nth Output Value * nth Gradient + Momentum * OldDeltaWeight). Then assign New Weight as (OldWeight + NewDeltaWeight)
Repeat process.
Here is my attempt for digit number seven. The outputs are Neuron # zero and Neuron # 6. Neuron six should be carrying 1 and Neuron # zero should be carrying 0. In my results, all Neuron other than six are carrying the same value (# zero is a sample).
Sorry for the long post. If you know this then you probably know how cool it is and how large it is to be in a single post. Thank you in advance
Softmax with log-loss is typically used for multiclass output layer activation function. You have multiclass/multinomial: with the 10 possible digits comprising the 10 classes.
So you can try changing your output layer activation function to softmax
http://en.wikipedia.org/wiki/Softmax_function
Artificial neural networks
In neural network simulations, the
softmax function is often implemented at the final layer of a network
used for classification. Such networks are then trained under a log
loss (or cross-entropy) regime, giving a non-linear variant of
multinomial logistic regression.
Let us know what effect that has. –

Dimensionality in Isomap

Given a D-dimensional data (D features), what is the maximum number of projections (d-dimensions) in Isomap?
Usually for PCA, LDA, you have the same number of possible components as the number of your features... In isomap it seems to be possible to have more (?)
Imagine that you input consists of N data vectors, each of which is D dimensional.
Isomap constructs a N x N matrix based on finding near-neighbors and then looking for paths between near neighbors to connect far away neighbors, then Isomap solves an eigenvalue problem on this N x N matrix to define the projections
So, IF you have more datavectors than you have dimensions in each datavector, THEN you may have more projections than you have data points.
An easy data set to explore this is:
create 100 points randomly on a circle in 2D. Then N = 100, D = 2.
The Isomap projections and coefficients will be non-zero for the first 99 projections.

How to update the bias in neural network backpropagation?

Could someone please explain to me how to update the bias throughout backpropagation?
I've read quite a few books, but can't find bias updating!
I understand that bias is an extra input of 1 with a weight attached to it (for each neuron). There must be a formula.
Following the notation of Rojas 1996, chapter 7, backpropagation computes partial derivatives of the error function E (aka cost, aka loss)
∂E/∂w[i,j] = delta[j] * o[i]
where w[i,j] is the weight of the connection between neurons i and j, j being one layer higher in the network than i, and o[i] is the output (activation) of i (in the case of the "input layer", that's just the value of feature i in the training sample under consideration). How to determine delta is given in any textbook and depends on the activation function, so I won't repeat it here.
These values can then be used in weight updates, e.g.
// update rule for vanilla online gradient descent
w[i,j] -= gamma * o[i] * delta[j]
where gamma is the learning rate.
The rule for bias weights is very similar, except that there's no input from a previous layer. Instead, bias is (conceptually) caused by input from a neuron with a fixed activation of 1. So, the update rule for bias weights is
bias[j] -= gamma_bias * 1 * delta[j]
where bias[j] is the weight of the bias on neuron j, the multiplication with 1 can obviously be omitted, and gamma_bias may be set to gamma or to a different value. If I recall correctly, lower values are preferred, though I'm not sure about the theoretical justification of that.
The amount you change each individual weight and bias will be the partial derivative of your cost function in relation to each individual weight and each individual bias.
∂C/∂(index of bias in network)
Since your cost function probably doesn't explicitly depend on individual weights and values (Cost might equal (network output - expected output)^2, for example), you'll need to relate the partial derivatives of each weight and bias to something you know, i.e. the activation values (outputs) of neurons. Here's a great guide to doing this:
https://medium.com/#erikhallstrm/backpropagation-from-the-beginning-77356edf427d
This guide states how to do these things clearly, but can sometimes be lacking on explanation. I found it very helpful to read chapters 1 and 2 of this book as I read the guide linked above:
http://neuralnetworksanddeeplearning.com/chap1.html
(provides essential background for the answer to your question)
http://neuralnetworksanddeeplearning.com/chap2.html
(answers your question)
Basically, biases are updated in the same way that weights are updated: a change is determined based on the gradient of the cost function at a multi-dimensional point.
Think of the problem your network is trying to solve as being a landscape of multi-dimensional hills and valleys (gradients). This landscape is a graphical representation of how your cost changes with changing weights and biases. The goal of a neural network is to reach the lowest point in this landscape, thereby finding the smallest cost and minimizing error. If you imagine your network as a traveler trying to reach the bottom of these gradients (i.e. Gradient Descent), then the amount you will change each weight (and bias) by is related to the the slope of the incline (gradient of the function) that the traveler is currently climbing down. The exact location of the traveler is given by a multi-dimensional coordinate point (weight1, weight2, weight3, ... weight_n), where the bias can be thought of as another kind of weight. Thinking of the weights/biases of a network as the variables for the network's cost function make it clear that ∂C/∂(index of bias in network) must be used.
I understand that the function of bias is to make level adjust of the
input values. Below is what happens inside the neuron. The activation function of course
will make the final output, but it is left out for clarity.
O = W1 I1 + W2 I2 + W3 I3
In real neuron something happens already at synapses, the input data is level adjusted with average of samples and scaled with deviation of samples. Thus the input data is normalized and with equal weights they will make the same effect. The normalized In is calculated from raw data in (n is the index).
Bn = average(in); Sn = 1/stdev((in); In= (in+Bn)Sn
However this is not necessary to be performed separately, because the neuron weights and bias can do the same function. When you subsitute In with the in, you get new formula
O = w1 i1 + w2 i2 + w3 i3+ wbs
The last wbs is the bias and new weights wn as well
wbs = W1 B1 S1 + W2 B2 S2 + W3 B3 S3
wn =W1 (in+Bn) Sn
So there exists a bias and it will/should be adjusted automagically with the backpropagation

What is the role of the bias in neural networks? [closed]

Closed. This question does not meet Stack Overflow guidelines. It is not currently accepting answers.
This question does not appear to be about programming within the scope defined in the help center.
Closed 2 years ago.
Improve this question
I'm aware of the gradient descent and the back-propagation algorithm. What I don't get is: when is using a bias important and how do you use it?
For example, when mapping the AND function, when I use two inputs and one output, it does not give the correct weights. However, when I use three inputs (one of which is a bias), it gives the correct weights.
I think that biases are almost always helpful. In effect, a bias value allows you to shift the activation function to the left or right, which may be critical for successful learning.
It might help to look at a simple example. Consider this 1-input, 1-output network that has no bias:
The output of the network is computed by multiplying the input (x) by the weight (w0) and passing the result through some kind of activation function (e.g. a sigmoid function.)
Here is the function that this network computes, for various values of w0:
Changing the weight w0 essentially changes the "steepness" of the sigmoid. That's useful, but what if you wanted the network to output 0 when x is 2? Just changing the steepness of the sigmoid won't really work -- you want to be able to shift the entire curve to the right.
That's exactly what the bias allows you to do. If we add a bias to that network, like so:
...then the output of the network becomes sig(w0*x + w1*1.0). Here is what the output of the network looks like for various values of w1:
Having a weight of -5 for w1 shifts the curve to the right, which allows us to have a network that outputs 0 when x is 2.
A simpler way to understand what the bias is: it is somehow similar to the constant b of a linear function
y = ax + b
It allows you to move the line up and down to fit the prediction with the data better.
Without b, the line always goes through the origin (0, 0) and you may get a poorer fit.
Here are some further illustrations showing the result of a simple 2-layer feed forward neural network with and without bias units on a two-variable regression problem. Weights are initialized randomly and standard ReLU activation is used. As the answers before me concluded, without the bias the ReLU-network is not able to deviate from zero at (0,0).
Two different kinds of parameters can
be adjusted during the training of an
ANN, the weights and the value in the
activation functions. This is
impractical and it would be easier if
only one of the parameters should be
adjusted. To cope with this problem a
bias neuron is invented. The bias
neuron lies in one layer, is connected
to all the neurons in the next layer,
but none in the previous layer and it
always emits 1. Since the bias neuron
emits 1 the weights, connected to the
bias neuron, are added directly to the
combined sum of the other weights
(equation 2.1), just like the t value
in the activation functions.1
The reason it's impractical is because you're simultaneously adjusting the weight and the value, so any change to the weight can neutralize the change to the value that was useful for a previous data instance... adding a bias neuron without a changing value allows you to control the behavior of the layer.
Furthermore the bias allows you to use a single neural net to represent similar cases. Consider the AND boolean function represented by the following neural network:
(source: aihorizon.com)
w0 corresponds to b.
w1 corresponds to x1.
w2 corresponds to x2.
A single perceptron can be used to
represent many boolean functions.
For example, if we assume boolean values
of 1 (true) and -1 (false), then one
way to use a two-input perceptron to
implement the AND function is to set
the weights w0 = -3, and w1 = w2 = .5.
This perceptron can be made to
represent the OR function instead by
altering the threshold to w0 = -.3. In
fact, AND and OR can be viewed as
special cases of m-of-n functions:
that is, functions where at least m of
the n inputs to the perceptron must be
true. The OR function corresponds to
m = 1 and the AND function to m = n.
Any m-of-n function is easily
represented using a perceptron by
setting all input weights to the same
value (e.g., 0.5) and then setting the
threshold w0 accordingly.
Perceptrons can represent all of the
primitive boolean functions AND, OR,
NAND ( 1 AND), and NOR ( 1 OR). Machine Learning- Tom Mitchell)
The threshold is the bias and w0 is the weight associated with the bias/threshold neuron.
The bias is not an NN term. It's a generic algebra term to consider.
Y = M*X + C (straight line equation)
Now if C(Bias) = 0 then, the line will always pass through the origin, i.e. (0,0), and depends on only one parameter, i.e. M, which is the slope so we have less things to play with.
C, which is the bias takes any number and has the activity to shift the graph, and hence able to represent more complex situations.
In a logistic regression, the expected value of the target is transformed by a link function to restrict its value to the unit interval. In this way, model predictions can be viewed as primary outcome probabilities as shown:
Sigmoid function on Wikipedia
This is the final activation layer in the NN map that turns on and off the neuron. Here also bias has a role to play and it shifts the curve flexibly to help us map the model.
A layer in a neural network without a bias is nothing more than the multiplication of an input vector with a matrix. (The output vector might be passed through a sigmoid function for normalisation and for use in multi-layered ANN afterwards, but that’s not important.)
This means that you’re using a linear function and thus an input of all zeros will always be mapped to an output of all zeros. This might be a reasonable solution for some systems but in general it is too restrictive.
Using a bias, you’re effectively adding another dimension to your input space, which always takes the value one, so you’re avoiding an input vector of all zeros. You don’t lose any generality by this because your trained weight matrix needs not be surjective, so it still can map to all values previously possible.
2D ANN:
For a ANN mapping two dimensions to one dimension, as in reproducing the AND or the OR (or XOR) functions, you can think of a neuronal network as doing the following:
On the 2D plane mark all positions of input vectors. So, for boolean values, you’d want to mark (-1,-1), (1,1), (-1,1), (1,-1). What your ANN now does is drawing a straight line on the 2d plane, separating the positive output from the negative output values.
Without bias, this straight line has to go through zero, whereas with bias, you’re free to put it anywhere.
So, you’ll see that without bias you’re facing a problem with the AND function, since you can’t put both (1,-1) and (-1,1) to the negative side. (They are not allowed to be on the line.) The problem is equal for the OR function. With a bias, however, it’s easy to draw the line.
Note that the XOR function in that situation can’t be solved even with bias.
When you use ANNs, you rarely know about the internals of the systems you want to learn. Some things cannot be learned without a bias. E.g., have a look at the following data: (0, 1), (1, 1), (2, 1), basically a function that maps any x to 1.
If you have a one layered network (or a linear mapping), you cannot find a solution. However, if you have a bias it's trivial!
In an ideal setting, a bias could also map all points to the mean of the target points and let the hidden neurons model the differences from that point.
Modification of neuron WEIGHTS alone only serves to manipulate the shape/curvature of your transfer function, and not its equilibrium/zero crossing point.
The introduction of bias neurons allows you to shift the transfer function curve horizontally (left/right) along the input axis while leaving the shape/curvature unaltered.
This will allow the network to produce arbitrary outputs different from the defaults and hence you can customize/shift the input-to-output mapping to suit your particular needs.
See here for graphical explanation:
http://www.heatonresearch.com/wiki/Bias
In a couple of experiments in my masters thesis (e.g. page 59), I found that the bias might be important for the first layer(s), but especially at the fully connected layers at the end it seems not to play a big role.
This might be highly dependent on the network architecture / dataset.
If you're working with images, you might actually prefer to not use a bias at all. In theory, that way your network will be more independent of data magnitude, as in whether the picture is dark, or bright and vivid. And the net is going to learn to do it's job through studying relativity inside your data. Lots of modern neural networks utilize this.
For other data having biases might be critical. It depends on what type of data you're dealing with. If your information is magnitude-invariant --- if inputting [1,0,0.1] should lead to the same result as if inputting [100,0,10], you might be better off without a bias.
Bias determines how much angle your weight will rotate.
In a two-dimensional chart, weight and bias can help us to find the decision boundary of outputs.
Say we need to build a AND function, the input(p)-output(t) pair should be
{p=[0,0], t=0},{p=[1,0], t=0},{p=[0,1], t=0},{p=[1,1], t=1}
Now we need to find a decision boundary, and the ideal boundary should be:
See? W is perpendicular to our boundary. Thus, we say W decided the direction of boundary.
However, it is hard to find correct W at first time. Mostly, we choose original W value randomly. Thus, the first boundary may be this:
Now the boundary is parallel to the y axis.
We want to rotate the boundary. How?
By changing the W.
So, we use the learning rule function: W'=W+P:
W'=W+P is equivalent to W' = W + bP, while b=1.
Therefore, by changing the value of b(bias), you can decide the angle between W' and W. That is "the learning rule of ANN".
You could also read Neural Network Design by Martin T. Hagan / Howard B. Demuth / Mark H. Beale, chapter 4 "Perceptron Learning Rule"
In simpler terms, biases allow for more and more variations of weights to be learnt/stored... (side-note: sometimes given some threshold). Anyway, more variations mean that biases add richer representation of the input space to the model's learnt/stored weights. (Where better weights can enhance the neural net’s guessing power)
For example, in learning models, the hypothesis/guess is desirably bounded by y=0 or y=1 given some input, in maybe some classification task... i.e some y=0 for some x=(1,1) and some y=1 for some x=(0,1). (The condition on the hypothesis/outcome is the threshold I talked about above. Note that my examples setup inputs X to be each x=a double or 2 valued-vector, instead of Nate's single valued x inputs of some collection X).
If we ignore the bias, many inputs may end up being represented by a lot of the same weights (i.e. the learnt weights mostly occur close to the origin (0,0).
The model would then be limited to poorer quantities of good weights, instead of the many many more good weights it could better learn with bias. (Where poorly learnt weights lead to poorer guesses or a decrease in the neural net’s guessing power)
So, it is optimal that the model learns both close to the origin, but also, in as many places as possible inside the threshold/decision boundary. With the bias we can enable degrees of freedom close to the origin, but not limited to origin's immediate region.
In neural networks:
Each neuron has a bias
You can view bias as a threshold (generally opposite values of threshold)
Weighted sum from input layers + bias decides activation of a neuron
Bias increases the flexibility of the model.
In absence of bias, the neuron may not be activated by considering only the weighted sum from the input layer. If the neuron is not activated, the information from this neuron is not passed through rest of the neural network.
The value of bias is learnable.
Effectively, bias = — threshold. You can think of bias as how easy it is to get the neuron to output a 1 — with a really big bias, it’s very easy for the neuron to output a 1, but if the bias is very negative, then it’s difficult.
In summary: bias helps in controlling the value at which the activation function will trigger.
Follow this video for more details.
Few more useful links:
geeksforgeeks
towardsdatascience
Expanding on zfy's explanation:
The equation for one input, one neuron, one output should look:
y = a * x + b * 1 and out = f(y)
where x is the value from the input node and 1 is the value of the bias node;
y can be directly your output or be passed into a function, often a sigmoid function. Also note that the bias could be any constant, but to make everything simpler we always pick 1 (and probably that's so common that zfy did it without showing & explaining it).
Your network is trying to learn coefficients a and b to adapt to your data.
So you can see why adding the element b * 1 allows it to fit better to more data: now you can change both slope and intercept.
If you have more than one input your equation will look like:
y = a0 * x0 + a1 * x1 + ... + aN * 1
Note that the equation still describes a one neuron, one output network; if you have more neurons you just add one dimension to the coefficient matrix, to multiplex the inputs to all nodes and sum back each node contribution.
That you can write in vectorized format as
A = [a0, a1, .., aN] , X = [x0, x1, ..., 1]
Y = A . XT
i.e. putting coefficients in one array and (inputs + bias) in another you have your desired solution as the dot product of the two vectors (you need to transpose X for the shape to be correct, I wrote XT a 'X transposed')
So in the end you can also see your bias as is just one more input to represent the part of the output that is actually independent of your input.
To think in a simple way, if you have y=w1*x where y is your output and w1 is the weight, imagine a condition where x=0 then y=w1*x equals to 0.
If you want to update your weight you have to compute how much change by delw=target-y where target is your target output. In this case 'delw' will not change since y is computed as 0. So, suppose if you can add some extra value it will help y = w1x + w01, where bias=1 and weight can be adjusted to get a correct bias. Consider the example below.
In terms of line slope, intercept is a specific form of linear equations.
y = mx + b
Check the image
image
Here b is (0,2)
If you want to increase it to (0,3) how will you do it by changing the value of b the bias.
For all the ML books I studied, the W is always defined as the connectivity index between two neurons, which means the higher connectivity between two neurons.
The stronger the signals will be transmitted from the firing neuron to the target neuron or Y = w * X as a result to maintain the biological character of neurons, we need to keep the 1 >=W >= -1, but in the real regression, the W will end up with |W| >=1 which contradicts how the neurons are working.
As a result, I propose W = cos(theta), while 1 >= |cos(theta)|, and Y= a * X = W * X + b while a = b + W = b + cos(theta), b is an integer.
Bias acts as our anchor. It's a way for us to have some kind of baseline where we don't go below that. In terms of a graph, think of like y=mx+b it's like a y-intercept of this function.
output = input times the weight value and added a bias value and then apply an activation function.
The term bias is used to adjust the final output matrix as the y-intercept does. For instance, in the classic equation, y = mx + c, if c = 0, then the line will always pass through 0. Adding the bias term provides more flexibility and better generalisation to our neural network model.
The bias helps to get a better equation.
Imagine the input and output like a function y = ax + b and you need to put the right line between the input(x) and output(y) to minimise the global error between each point and the line, if you keep the equation like this y = ax, you will have one parameter for adaptation only, even if you find the best a minimising the global error it will be kind of far from the wanted value.
You can say the bias makes the equation more flexible to adapt to the best values

Resources