How to present negative number in bitvector? - z3

The title says it all. I try to present -1 as the following: (_ bv-1 32), and z3 complains.
How do I present constraint such as 3x - 5y <= 10 in bit vector? For some reason, I do not want to use linear integer.

This is usually done via two's complement encoding. The short version is,
-x = flip(x) + 1
where flip(x) simply flips all the bits in x.

Related

bin2dec for 16 bit signed binary values (in google sheets)

In google sheets, I'm trying to convert a 16-bit signed binary number to its decimal equivalent, but the built in function that does that only takes up to 10 bits. Other solutions to the problem that I've seen don't preserve the signedness.
So far I've tried:
bin2dec on the leftmost 8 bits * 2^8 + bin2dec on the rightmost 8 bits
hex2dec on the result of bin2dec on the leftmost 8 bits concatenated with bin2dec on the rightmost 8 bits
I've also seen a suggestion that multiplies each bit by its power of 2, eliminating bin2dec altogether.
Any suggestions?
You will need to use a custom function
function binary2decimal(bin) {
return parseInt(bin, 2);
}
Let's assume that your binary number is in cell A2.
First, set the formatting as follows: Format > Number > Plain text.
Then place the following formula in, say, B2:
=ArrayFormula(SUM(SPLIT(REGEXREPLACE(SUBSTITUTE(A2&"","-",""),"(\d)","$1|"),"|")*(2^SEQUENCE(1,LEN(SUBSTITUTE(A2&"","-","")),LEN(SUBSTITUTE(A2&"","-",""))-1,-1))*IF(LEFT(A2)="-",-1,1)))
This formula will process any length binary number, positive or negative, from 1 bit to 16 bits (and, in fact, to a length of 45 or 46 bits).
What this formula does is SPLIT the binary number (without the negative sign if it exists) into its separate bits, one per column; multiply each of those by 2 raised to the power of each element of an equal-sized degressive SEQUENCE that runs from a high of the LEN (i.e., number) of bits down to zero; and finally apply the negative sign conditionally IF one exists.
If you need to process a range where every value is a positive or negative binary number with exactly 16 bits, you can do so. Suppose that your 16-bit binary numbers are in the range A2:A. First, be sure to select all of Column A and set the formatting to "Plain text" as described above. Then place the following array formula into, say, B2 (being sure that B2:B is empty first):
=ArrayFormula(MMULT(SPLIT(REGEXREPLACE(SUBSTITUTE(FILTER(A2:A,A2:A<>"")&"","-",""),"(\d)","$1|"),"|")*(2^SEQUENCE(1,16,15,-1)),SEQUENCE(16,1,1,0))*IF(LEFT(FILTER(A2:A,A2:A<>""))="-",-1,1))

Check that at least 1 element is true in each of multiple vectors of compare results - horizontal OR then AND

I'm looking for an SSE Bitwise OR between components of same vector. (Editor's note: this is potentially an X-Y problem, see below for the real comparison logic.)
I am porting some SIMD logic from SPU intrinsics. It has an instruction
spu_orx(a)
Which according to the docs
spu_orx: OR word across d = spu_orx(a) The four word elements of
vector a are logically Ored. The result is returned in word element 0
of vector d. All other elements (1,2,3) of d are assigned a value of
zero.
How can I do that with SSE 2 - 4 involving minimum instruction? _mm_or_ps is what I got here.
UPDATE:
Here is the scenario from SPU based code:
qword res = spu_orx(spu_or(spu_fcgt(x, y), spu_fcgt(z, w)))
So it first ORs two 'greater' comparisons, then ORs its result.
Later couples of those results are ANDed to get final comparison value.
This is effectively doing (A||B||C||D||E||F||G||H) && (I||J||K||L||M||N||O||P) && ... where A..D are the 4x 32-bit elements of the fcgt(x,y) and so on.
Obviously vertical _mm_or_ps of _mm_cmp_ps results is a good way to reduce down to 1 vector, but then what? Shuffle + OR, or something else?
UPDATE 1
Regarding "but then what?"
I perform
qword res = spu_orx(spu_or(spu_fcgt(x, y), spu_fcgt(z, w)))
On SPU it goes like this:
qword aRes = si_and(res, res1);
qword aRes1 = si_and(aRes, res2);
qword aRes2 = si_and(aRes1 , res3);
return si_to_uint(aRes2 );
several times on different inputs,then AND those all into a single result,which is finally cast to integer 0 or 1 (false/true test)
SSE4.1 PTEST bool any_nonzero = !_mm_testz_si128(v,v);
That would be a good way to horizontal OR + booleanize a vector into a 0/1 integer. It will compile to multiple instructions, and ptest same,same is 2 uops on its own. But once you have the result as a scalar integer, scalar AND is even cheaper than any vector instruction, and you can branch on the result directly because it sets integer flags.
#include <immintrin.h>
bool any_nonzero_bit(__m128i v) {
return !_mm_testz_si128(v,v);
}
On Godbolt with gcc9.1 -O3 -march=nehalem:
any_nonzero(long long __vector(2)):
ptest xmm0, xmm0 # 2 uops
setne al # 1 uop with false dep on old value of RAX
ret
This is only 3 uops on Intel for a horizontal OR into a single bit in an integer register. AMD Ryzen ptest is only 1 uop so it's even better.
The only risk here is if gcc or clang creates false dependencies by not xor-zeroing eax before doing a setcc into AL. Usually gcc is pretty fanatical about spending extra uops to break false dependencies so I don't know why it doesn't here. (I did check with -march=skylake and -mtune=generic in case it was relying on Nehalem partial-register renaming for -march=nehalem. Even -march=znver1 didn't get it to xor-zero EAX before the ptest.)
It would be nice if we could avoid the _mm_or_ps and have PTEST do all the work. But even if we consider inverting the comparisons, the vertical-AND / horizontal-OR behaviour doesn't let us check something about all 8 elements of 2 vectors, or about any of those 8 elements.
e.g. Can PTEST be used to test if two registers are both zero or some other condition?
// NOT USEFUL
// 1 if all the vertical pairs AND to zero.
// but 0 if even one vertical AND result is non-zero
_mm_testz_si128( _mm_castps_si128(_mm_cmpngt_ps(x,y)),
_mm_castps_si128(_mm_cmpngt_ps(z,w)));
I mention this only to rule it out and save you the trouble of considering this optimization idea. (#chtz suggested it in comments. Inverting the comparison is a good idea that can be useful for other ways of doing things.)
Without SSE4.1 / delaying the horizontal OR
We might be able to delay horizontal ORing / booleanizing until after combining some results from multiple vectors. This makes combining more expensive (imul or something), but saves 2 uops in the vector -> integer stage vs. PTEST.
x86 has cheap vector mask->integer bitmap with _mm_movemask_ps. Especially if you ultimately want to branch on the result, this might be a good idea. (But x86 doesn't have a || instruction that booleanizes its inputs either so you can't just & the movemask results).
One thing you can do is integer multiply movemask results: x * y is non-zero iff both inputs are non-zero. Unlike x & y which can be false for 0b0101 &0b1010for example. (Our inputs are 4-bit movemask results andunsigned` is 32-bit so we have some room before we overflow). AMD Bulldozer family has an integer multiply that isn't fully pipelined so this could be a bottleneck on old AMD CPUs. Using just 32-bit integers is also good for some low-power CPUs with slow 64-bit multiply.
This might be good if throughput is more of a bottleneck than latency, although movmskps can only run on one port.
I'm not sure if there are any cheaper integer operations that let us recover the logical-AND result later. Adding doesn't work; the result is non-zero even if only one of the inputs was non-zero. Concatenating the bits together (shift+or) is also of course like an OR if we eventually just test for any non-zero bit. We can't just bitwise AND because 2 & 1 == 0, unlike 2 && 1.
Keeping it in the vector domain
Horizontal OR of 4 elements takes multiple steps.
The obvious way is _mm_movehl_ps + OR, then another shuffle+OR. (See Fastest way to do horizontal float vector sum on x86 but replace _mm_add_ps with _mm_or_ps)
But since we don't actually need an exact bitwise-OR when our inputs are compare results, we just care if any element is non-zero. We can and should think of the vectors as integer, and look at integer instructions like 64-bit element ==. One 64-bit element covers/aliases two 32-bit elements.
__m128i cmp = _mm_castps_si128(cmpps_result); // reinterpret: zero instructions
// SSE4.1 pcmpeqq 64-bit integer elements
__m128i cmp64 = _mm_cmpeq_epi64(cmp, _mm_setzero_si128()); // -1 if both elements were zero, otherwise 0
__m128i swap = _mm_shuffle_epi32(cmp64, _MM_SHUFFLE(1,0, 3,2)); // copy and swap, no movdqa instruction needed even without AVX
__m128i bothzero = _mm_and_si128(cmp64, swap); // both halves have the full result
After this logical inversion, ORing together multiple bothzero results will give you the AND of multiple conditions you're looking for.
Alternatively, SSE4.1 _mm_minpos_epu16(cmp64) (phminposuw) will tell us in 1 uop (but 5 cycle latency) if either qword is zero. It will place either 0 or 0xFFFF in the lowest word (16 bits) of the result in this case.
If we inverted the original compares, we could use phminposuw on that (without pcmpeqq) to check if any are zero. So basically a horizontal AND across the whole vector. (Assuming that it's elements of 0 / -1). I think that's a useful result for inverted inputs. (And saves us from using _mm_xor_si128 to flip the bits).
An alternative to pcmpeqq (_mm_cmpeq_epi64) would be SSE2 psadbw against a zeroed vector to get 0 or non-zero results in the bottom of each 64-bit element. It won't be a mask, though, it's 0xFF * 8. Still, it's always that or 0 so you can still AND it. And it doesn't invert.

Unexpected result subtracting decimals in ruby [duplicate]

Can somebody explain why multiplying by 100 here gives a less accurate result but multiplying by 10 twice gives a more accurate result?
± % sc
Loading development environment (Rails 3.0.1)
>> 129.95 * 100
12994.999999999998
>> 129.95*10
1299.5
>> 129.95*10*10
12995.0
If you do the calculations by hand in double-precision binary, which is limited to 53 significant bits, you'll see what's going on:
129.95 = 1.0000001111100110011001100110011001100110011001100110 x 2^7
129.95*100 = 1.1001011000010111111111111111111111111111111111111111011 x 2^13
This is 56 significant bits long, so rounded to 53 bits it's
1.1001011000010111111111111111111111111111111111111111 x 2^13, which equals
12994.999999999998181010596454143524169921875
Now 129.95*10 = 1.01000100110111111111111111111111111111111111111111111 x 2^10
This is 54 significant bits long, so rounded to 53 bits it's 1.01000100111 x 2^10 = 1299.5
Now 1299.5 * 10 = 1.1001011000011 x 2^13 = 12995.
First off: you are looking at the string representation of the result, not the actual result itself. If you really want to compare the two results, you should format both results explicitly, using String#% and you should format both results the same way.
Secondly, that's just how binary floating point numbers work. They are inexact, they are finite and they are binary. All three mean that you get rounding errors, which generally look totally random, unless you happen to have memorized the entirety of IEEE754 and can recite it backwards in your sleep.
There is no floating point number exactly equal to 129.95. So your language uses a value which is close to it instead. When that value is multiplied by 100, the result is close to 12995, but it just so happens to not equal 12995. (It is also not exactly equal to 100 times the original value it used in place of 129.95.) So your interpreter prints a decimal number which is close to (but not equal to) the value of 129.95 * 100 and which shows you that it is not exactly 12995. It also just so happens that the result 129.95 * 10 is exactly equal to 1299.5. This is mostly luck.
Bottom line is, never expect equality out of any floating point arithmetic, only "closeness".

Lua - round to double

The result of math.sqrt(2) seems to be irrational so this occurs:
> return math.sqrt(2)
1.4142135623731
> return math.sqrt(2) == 1.4142135623731
false
How do I make this "irrational" variable same as if I got the variable different way (like in the example above)?
The variable is not irrational, it is floating-point, so it isn't even real. (the square-root of 2 is irrational though, and thus cannot be accurately represented by it)
Just use more digits for your literal, and the round-trip conversion will work. An IEEE double-precision floating-point value needs 17 significant decimal digits to safely represent it, not 14.
Let's see what happens when we take the number 1 and uptick it in the least significant bit. (The '0x' means the numeral is hexadecimal. That makes it easier for me to control the bits for this example.):
x = 0x1.0000000000001
> print(x == 1)
false
> print(('%.16g'):format(x))
1
> print(('%.17g'):format(x))
1.0000000000000002

Can a SHA-1 hash be all-zeroes?

Is there any input that SHA-1 will compute to a hex value of fourty-zeros, i.e. "0000000000000000000000000000000000000000"?
Yes, it's just incredibly unlikely. I.e. one in 2^160, or 0.00000000000000000000000000000000000000000000006842277657836021%.
Also, becuase SHA1 is cryptographically strong, it would also be computationally unfeasible (at least with current computer technology -- all bets are off for emergent technologies such as quantum computing) to find out what data would result in an all-zero hash until it occurred in practice. If you really must use the "0" hash as a sentinel be sure to include an appropriate assertion (that you did not just hash input data to your "zero" hash sentinel) that survives into production. It is a failure condition your code will permanently need to check for. WARNING: Your code will permanently be broken if it does.
Depending on your situation (if your logic can cope with handling the empty string as a special case in order to forbid it from input) you could use the SHA1 hash ('da39a3ee5e6b4b0d3255bfef95601890afd80709') of the empty string. Also possible is using the hash for any string not in your input domain such as sha1('a') if your input has numeric-only as an invariant. If the input is preprocessed to add any regular decoration then a hash of something without the decoration would work as well (eg: sha1('abc') if your inputs like 'foo' are decorated with quotes to something like '"foo"').
I don't think so.
There is no easy way to show why it's not possible. If there was, then this would itself be the basis of an algorithm to find collisions.
Longer analysis:
The preprocessing makes sure that there is always at least one 1 bit in the input.
The loop over w[i] will leave the original stream alone, so there is at least one 1 bit in the input (words 0 to 15). Even with clever design of the bit patterns, at least some of the values from 0 to 15 must be non-zero since the loop doesn't affect them.
Note: leftrotate is circular, so no 1 bits will get lost.
In the main loop, it's easy to see that the factor k is never zero, so temp can't be zero for the reason that all operands on the right hand side are zero (k never is).
This leaves us with the question whether you can create a bit pattern for which (a leftrotate 5) + f + e + k + w[i] returns 0 by overflowing the sum. For this, we need to find values for w[i] such that w[i] = 0 - ((a leftrotate 5) + f + e + k)
This is possible for the first 16 values of w[i] since you have full control over them. But the words 16 to 79 are again created by xoring the first 16 values.
So the next step could be to unroll the loops and create a system of linear equations. I'll leave that as an exercise to the reader ;-) The system is interesting since we have a loop that creates additional equations until we end up with a stable result.
Basically, the algorithm was chosen in such a way that you can create individual 0 words by selecting input patterns but these effects are countered by xoring the input patterns to create the 64 other inputs.
Just an example: To make temp 0, we have
a = h0 = 0x67452301
f = (b and c) or ((not b) and d)
= (h1 and h2) or ((not h1) and h3)
= (0xEFCDAB89 & 0x98BADCFE) | (~0x98BADCFE & 0x10325476)
= 0x98badcfe
e = 0xC3D2E1F0
k = 0x5A827999
which gives us w[0] = 0x9fb498b3, etc. This value is then used in the words 16, 19, 22, 24-25, 27-28, 30-79.
Word 1, similarly, is used in words 1, 17, 20, 23, 25-26, 28-29, 31-79.
As you can see, there is a lot of overlap. If you calculate the input value that would give you a 0 result, that value influences at last 32 other input values.
The post by Aaron is incorrect. It is getting hung up on the internals of the SHA1 computation while ignoring what happens at the end of the round function.
Specifically, see the pseudo-code from Wikipedia. At the end of the round, the following computation is done:
h0 = h0 + a
h1 = h1 + b
h2 = h2 + c
h3 = h3 + d
h4 = h4 + e
So an all 0 output can happen if h0 == -a, h1 == -b, h2 == -c, h3 == -d, and h4 == -e going into this last section, where the computations are mod 2^32.
To answer your question: nobody knows whether there exists an input that produces all zero outputs, but cryptographers expect that there are based upon the simple argument provided by daf.
Without any knowledge of SHA-1 internals, I don't see why any particular value should be impossible (unless explicitly stated in the description of the algorithm). An all-zero value is no more or less probable than any other specific value.
Contrary to all of the current answers here, nobody knows that. There's a big difference between a probability estimation and a proof.
But you can safely assume it won't happen. In fact, you can safely assume that just about ANY value won't be the result (assuming it wasn't obtained through some SHA-1-like procedures). You can assume this as long as SHA-1 is secure (it actually isn't anymore, at least theoretically).
People doesn't seem realize just how improbable it is (if all humanity focused all of it's current resources on finding a zero hash by bruteforcing, it would take about xxx... ages of the current universe to crack it).
If you know the function is safe, it's not wrong to assume it won't happen. That may change in the future, so assume some malicious inputs could give that value (e.g. don't erase user's HDD if you find a zero hash).
If anyone still thinks it's not "clean" or something, I can tell you that nothing is guaranteed in the real world, because of quantum mechanics. You assume you can't walk through a solid wall just because of an insanely low probability.
[I'm done with this site... My first answer here, I tried to write a nice answer, but all I see is a bunch of downvoting morons who are wrong and can't even tell the reason why are they doing it. Your community really disappointed me. I'll still use this site, but only passively]
Contrary to all answers here, the answer is simply No.
The hash value always contains bits set to 1.

Resources