Erlang sumif function - erlang

I'm trying to make a sumif function in Erlang that would return a sum of all elements in a list if the predicate function evaluates to true. Here is what I have:
sumif(_, []) -> undefined;
sumif(Fun, [H|T]) -> case Fun(H) of
true -> H + sumif(Fun, T);
false -> sumif(Fun, T)
end.
I also implemented my own pos function which returns true if a number is greater than 0 and false otherwise:
pos(A) -> A > 0.
I tried using pos with sumif but I'm getting this error:
exception error: bad function pos
Why is this happening? Is it because of my sumif function or pos? I have tested pos on its own and it seems to work just fine.
Edit: It might be because how I'm calling the function. This is how I'm currently calling it: hi:sumif(pos,[-1,1,2,-3]). Where hi is my module name.

Is it because of my sumif function or pos?
It's because of sumif. You should return 0 when an empty list is passed, as it'll be called from the 2nd clause when T is []:
-module(a).
-compile(export_all).
sumif(_, []) -> 0;
sumif(Fun, [H|T]) -> case Fun(H) of
true -> H + sumif(Fun, T);
false -> sumif(Fun, T)
end.
pos(A) -> A > 0.
Test:
1> c(a).
{ok,a}
2> a:sumif(fun a:pos/1, [-4, -2, 0, 2, 4]).
6

List comprehensions make things far simpler:
sumif(F, L) ->
lists:sum([X || X <- L, F(X)]).
Dobert's answer is of cousrse right, problem is your sum for empty list.
If your concern is performance a little bit you should stick to tail recursive solution (in this case it matter because there is not lists:reverse/1 involved).
sumif(F, L) ->
sumif(F, L, 0).
sumif(F, [], Acc) when is_function(F, 1) -> Acc;
sumif(F, [H|T], Acc) ->
New = case F(H) of
true -> H+Acc;
false -> Acc
end,
sumif(F, T, New).
Ways how to make correct function for first parameter:
F1 = fun pos/1, % inside module where pos/1 defined
F2 = fun xyz:pos/1, % exported function from module xyz (hot code swap works)
N = 0,
F3 = fun(X) -> X > N end, % closure
% test it
true = lists:all(fun(F) -> is_function(F, 1) end, [F1, F2, F3]).

There has tow error in your code:
1. sumif(_, []) -> undefined; should return 0, not undefined.
2. when you pass pos(A) -> A > 0. to sumif/2,you should use fun pos/1, please read http://erlang.org/doc/programming_examples/funs.html#id59138
sumif(F, L) ->
lists:foldl(fun(X, Sum) when F(X) -> Sum+X; (_) -> Sum end, 0, L).
You can use lists:foldl.

Related

How do you use foldl in erlang on a list of integers to return the maximum integer?

I would like to use the below Erlang code to get the highest integer in a list of integers but for some reason always end up getting the last integer in the list. Any help?
Solution example -> test:max([2,8,5,6]). should return 8 but with this code it returns 6.
-spec max(L) -> M when
L::[integer()],
M::integer().
max([H | T]) ->
F = fun(L, Acc) -> max([L]) end,
lists:foldl(F, H, T).
Your function F should return the max of L and Acc. You can use the builtin max/2 function for that:
...
F = fun(L, Acc) -> max(L, Acc) end.
...
Test:
1> F = fun(L, Acc) -> max(L, Acc) end.
#Fun<erl_eval.12.52032458>
2> [H | T] = [2, 8, 5, 6].
[2,8,5,6]
3> lists:foldl(F, H, T).
8
What you return in your function F will be the new value of Acc, and eventually the value lists:foldl/3 will return.
What you may want to do is do comparison inside F and check if Acc is greater than the current value. You don't need to recurse max/1 since you're iterating the list in lists:foldl/3 anyway.
Let me know if you need the actual code right away, but I would recommend figuring it out yourself. It's more fun for you that way.

Remove list element occur only once

I have a list in erlang containing interger values.
I want to remove values that occur only one time.(Not Duplicates).
Input = [1,3,2,1,2,2]
Output = [1,2,1,2,2]
I am newbie to erlang. I have tried an approach to sorting them first using list:sort() and then removing a member if the member next to it is the same.
I am having trouble trying to iterate the list. It would be great help if you can show me how I can do it.
multiple(L) ->
M = L -- lists:usort(L),
[X || X <- L , lists:member(X,M)].
Use map to count values and then filter values which was not present just once.
-module(test).
-export([remove_unique/1]).
remove_unique(L) ->
Count = lists:foldl(fun count/2, #{}, L),
lists:filter(fun(X) -> maps:get(X, Count) =/= 1 end, L).
count(X, M) ->
maps:put(X, maps:get(X, M, 0) + 1, M).
And test:
1> c(test).
{ok,test}
2> test:remove_unique([1,2,3,3,3,5,5,6,7,7]).
[3,3,3,5,5,7,7]
3> test:remove_unique([1,2,3,3,3,5,5,6,7,8]).
[3,3,3,5,5]
4> test:remove_unique([1,3,2,1,2,2]).
[1,2,1,2,2]
Here's a solution I'd written when first seeing the question when posted, that uses the same logic as #A.Sarid's recursion/pattern matching answer, except that I use a "Last" parameter instead of the count.
-module(only_dupes).
-export([process/1]).
process([]) -> [];
process(L) when is_list(L) ->
[H|T] = lists:sort(L),
lists:sort(process(undefined, H, T, [])).
process(Last, Curr, [], Acc)
when Curr =/= Last ->
Acc;
process(_Last, Curr, [], Acc) ->
[Curr | Acc];
process(Last, Curr, [Next | Rest], Acc)
when Curr =/= Last, Curr =/= Next ->
process(Curr, Next, Rest, Acc);
process(_Last, Curr, [Next | Rest], Acc) ->
process(Curr, Next, Rest, [Curr | Acc]).
One way for iterating a list (that as a result will return a new list) is using recursion and pattern matching.
After you sort your list you want to iterate the list and to check not only that it is different from the next element, but that there was no other equal elements before it. Consider the list [3,3,3,5,5] if you will only check the next element, the last 3 will also be unique and that is incorrect.
Here is a working program, I used a counter to cover the above case as well. See the syntax for using [H|T] for iterating over the list. You may see more cases and read more about it here.
-module(test).
-export([remove_unique/1]).
remove_unique(Input) ->
Sorted = lists:sort(Input),
remove_unique(Sorted, [], 0).
% Base case - checks if element is unique
remove_unique([H|[]],Output,Count) ->
case Count of
0 -> Output;
_Other -> [H|Output]
end;
% Count is 0 - might be unique - check with next element
remove_unique([H1|[H2|T]],Output, 0)->
case (H1 =:= H2) of
true -> remove_unique([H2|T],[H1|Output],1);
false -> remove_unique([H2|T],Output,0)
end;
% Count is > 0 - not unique - proceed adding to list until next value
remove_unique([H1|[H2|T]],Output,Count) ->
case (H1 =:= H2) of
true -> remove_unique([H2|T],[H1|Output],Count+1);
false -> remove_unique([H2|T],[H1|Output],0)
end.
Test
7> test:remove_unique([1,2,3,3,3,5,5,6,7,7]).
[7,7,5,5,3,3,3]
8> test:remove_unique([1,2,3,3,3,5,5,6,7,8]).
[5,5,3,3,3]

erlang; outsmarting compiler with memoization?

The following is my solution to Project Euler 14, which works (in 18 s):
%Which starting number, under one million, produces the longest Collartz chain?
-module(soln14).
-export([solve/0]).
collatz(L) ->
[H|T] = L,
F = erlang:get({'collatz', H}),
case is_list(F) of
true ->
R = lists:append(F, T);
false ->
if H == 1 ->
R = L;
true ->
if H rem 2 == 0 ->
R = collatz([H div 2 | L]);
true ->
R = collatz([3*H+1 | L])
end
end,
erlang:put({'collatz', lists:last(L)}, R),
R
end.
dosolve(N, Max, MaxN, TheList) ->
if N == 1000000 -> MaxN;
true ->
L = collatz([N]),
M = length(L),
if M > Max -> dosolve(N+1, M, N, L);
true ->
dosolve(N+1, Max, MaxN, TheList)
end
end.
solve() ->
{Megass, Ss, Micros} = erlang:timestamp(),
S = dosolve(1, -1, 1, []),
{Megase, Se, Microe} = erlang:timestamp(),
{Megase-Megass, Se-Ss, Microe-Micros, S}.
However, the compiler complains:
8> c(soln14).
soln14.erl:20: Warning: variable 'R' is unused
{ok,soln14}
9> soln14:solve().
{0,18,-386776,837799}
Is this a compiler scoping error, or do I have a legit bug?
It's not a compiler error, just a warning that in the true case of "case is_list(F) of", the bindning of R to the result of lists:append() is pointless, since this value of R will not be used after that point, just returned immediately. I'll leave it to you to figure out if that's a bug or not. It may be that you are fooled by your indentation. The lines "erlang:put(...)," and "R" are both still within the "false" case of "case is_list(F) of", and should be deeper indented to reflect this.
The error message and the code are not "synchronized". with the version you give, the warning is on line 10: R = lists:append(F, T);.
What it means is that you bind the result of the lists:append/2 call to R and that you don't use it later in the true statement.
this is not the case in the false statement since you use R in the function erlang:put/2.
You could write the code this way:
%Which starting number, under one million, produces the longest Collartz chain?
-module(soln14).
-export([solve/0,dosolve/4]).
collatz(L) ->
[H|T] = L,
F = erlang:get({'collatz', H}),
case is_list(F) of
true ->
lists:append(F, T);
false ->
R = if H == 1 ->
L;
true ->
if H rem 2 == 0 ->
collatz([H div 2 | L]);
true ->
collatz([3*H+1 | L])
end
end,
erlang:put({'collatz', lists:last(L)}, R),
R
end.
dosolve(N, Max, MaxN, TheList) ->
if N == 1000000 -> MaxN;
true ->
L = collatz([N]),
M = length(L),
if M > Max -> dosolve(N+1, M, N, L);
true ->
dosolve(N+1, Max, MaxN, TheList)
end
end.
solve() ->
timer:tc(?MODULE,dosolve,[1, -1, 1, []]).
Warning the code uses a huge amount of memory, collatz is not tail recursive, and it seems that there is some garbage collecting witch is not done.

Iterate over a cartesian product in Erlang without generating a list first

What's the Erlang equivalent to the following Python code:
for x in range(9):
for y in range(9):
for z in range(9):
foo(x, y, z)
I know I can generate the product first with C = [{X,Y,Z} || X<- lists:seq(1,9), Y<- lists:seq(1,9), Z<- lists:seq(1,9)] then foo([])->done; foo([H|T])->blah blah.
How do I do it without an auxiliary list, using recursion only?
You could do it with three recursive functions.
You might be able to do it with some complex pattern-matching in function head.
But easiest way to skip creation of auxiliary list is to call your function inside list comprehension
C = [foo(X, Y, Z) || X<- lists:seq(1,9),
Y<- lists:seq(1,9),
Z<- lists:seq(1,9)]
Where foo/3 process one element.
List comprehension still forces you to create auxiliary lists in memory.
In case of dealing with huge data sets you should avoid it. Writing recursive functions every time is also awkward so i came up with my own generic for function. It's a little bit slower in traversing than direct recursion or list comprehension but it's memory stable, generic and easy to use.
Usage:
(for({10}))(
fun (X) -> io:format("~p ",[X]) end).
> 1 2 3 4 5 6 7 8 9 10
(for({10, -10, -2}))(
fun (X) -> io:format("~p ",[X]) end).
> 10 8 6 4 2 0 -2 -4 -6 -8 -10
Works with lists too:
(for(lists:seq(10, -10, -2)))(
fun (X) -> io:format("~p ",[X]) end).
> 10 8 6 4 2 0 -2 -4 -6 -8 -10
It's also possible to define step or guard as a function:
(for({256, 1.1, fun (X) -> math:sqrt(X) end, fun (X, Range) -> X > Range end}))(
fun (X) -> io:format("~p ",[X]) end).
> 256 16.0 4.0 2.0 1.4142135623730951 1.189207115002721
If you pass to for a two parameter function, then you can use accumulator feature just like with lists:foldl/3. You also need to pass initial accumulator to for:
Fact = (for(1, {1, 5}))(
fun(X, Acc) ->
X * Acc
end),
io:format("~p", [Fact]).
> 120
e_fact(N) ->
{_, E} = (for({1, 1}, {1, N}))( % i assumed 1/0! equals 1
fun(X, {LastFact, Sum}) ->
Fact = LastFact * X,
{Fact, Sum + 1 / Fact}
end),
E.
io:format("e=~p", [e_fact(10)]).
> e=2.7182818011463845
Also step and guard functions can be dependent on accumulator. Just pass function with one more parameter.
Nested loops finding Pythagorean triples. Easy with closures:
pyth_lists(N) ->
[io:format("~p ", [{A, B, C}]) ||
A <- lists:seq(1, N),
B <- lists:seq(A + 1, N),
C <- lists:seq(B + 1, N),
A * A + B * B == C * C].
pyth_for(N) ->
(for({1, N}))(
fun(A) ->
(for({A + 1, N}))(
fun(B) ->
(for({B + 1, N}))(
fun(C) ->
case A * A + B * B == C * C of
true -> io:format("~p ", [{A, B, C}]);
false -> ok
end
end)
end)
end).
It's too small for external repository. I keep it in my utilities module.
If you find it helpful, here is code:
-export([for/1, for/2]).
for(Through) ->
for([], Through).
for(InitAcc, Opts) when is_tuple(Opts) ->
{Init, Range, Step, Guard} = for_apply_default_opts(Opts),
fun(Fun) ->
UpdFun = if
is_function(Fun, 1) ->
fun(I, _FAcc) -> Fun(I) end;
is_function(Fun, 2) ->
Fun
end,
for_iter(UpdFun, InitAcc, Init, Range, Step, Guard) end;
for(InitAcc, List) when is_list(List) ->
fun(Fun) -> for_list_eval(Fun, InitAcc, List) end.
for_iter(Fun, Acc, I, Range, Step, Guard) ->
case Guard(I, Range, Acc) of
false ->
Acc;
true ->
NewAcc = Fun(I, Acc),
for_iter(Fun, NewAcc, Step(I, NewAcc), Range, Step, Guard)
end.
for_list_eval(Fun, Acc, List) ->
if
is_function(Fun, 1) ->
lists:foreach(Fun, List);
is_function(Fun, 2) ->
lists:foldl(Fun, Acc, List)
end.
for_apply_default_opts({Range}) ->
DefaultInit = 1,
for_apply_default_opts({DefaultInit, Range});
for_apply_default_opts({Init, Range}) ->
DefaultStep = 1,
for_apply_default_opts({Init, Range, DefaultStep});
for_apply_default_opts({Init, Range, Step}) ->
DefaultGuard = case (Step > 0) or is_function(Step) of
true -> fun(I, IterRange, _Acc) -> I =< IterRange end;
false -> fun(I, IterRange, _Acc) -> I >= IterRange end
end,
for_apply_default_opts({Init, Range, Step, DefaultGuard});
for_apply_default_opts({Init, Range, Step, Guard}) when is_function(Guard, 2) ->
for_apply_default_opts({Init, Range, Step, fun(I, IterRange, _Acc) -> Guard(I, IterRange) end});
for_apply_default_opts({Init, Range, Step, DefaultGuard}) when is_number(Step) ->
for_apply_default_opts({Init, Range, fun(I, _Acc) -> I + Step end, DefaultGuard});
for_apply_default_opts({Init, Range, Step, DefaultGuard}) when is_function(Step, 1) ->
for_apply_default_opts({Init, Range, fun(I, _Acc) -> Step(I) end, DefaultGuard});
for_apply_default_opts({_Init, _Range, _Step, _DefaultGuard} = Opts) ->
Opts.

Splitting a list in equal sized chunks in Erlang

I want to split:
[1,2,3,4,5,6,7,8]
into:
[[1,2],[3,4],[5,6],[7,8]]
It generally works great with:
[ lists:sublist(List, X, 2) || X <- lists:seq(1,length(List),2) ] .
But it is really slow this way. 10000 Elements take amazing 2.5 seconds on my netbook. I have also written a really fast recursive function, but I am simply interested: Could this list comprehension also be written in a different way, so that it is faster?
Try this:
part(List) ->
part(List, []).
part([], Acc) ->
lists:reverse(Acc);
part([H], Acc) ->
lists:reverse([[H]|Acc]);
part([H1,H2|T], Acc) ->
part(T, [[H1,H2]|Acc]).
Test in erlang-shell (I've declared this function in module part):
2> part:part([1,2,3,4,5,6,7,8]).
[[1,2],[3,4],[5,6],[7,8]]
3>
3> timer:tc(part, part, [lists:seq(1,10000)]).
{774,
[[1,2],
[3,4],
[5,6],
[7,8],
"\t\n","\v\f",
[13,14],
[15,16],
[17,18],
[19,20],
[21,22],
[23,24],
[25,26],
[27,28],
[29,30],
[31,32],
"!\"","#$","%&","'(",")*","+,","-.","/0","12","34",
[...]|...]}
Just 774 microseconds (which is ~0,8 milliseconds)
Here are two quick solutions for you that are both flexible. One is easy to read, but only slightly faster than your proposed solution. The other is quite fast, but is a bit cryptic to read. And note that both of my proposed algorithms will work for lists of anything, not just numeric ordered lists.
Here is the "easy-to-read" one. Call by n_length_chunks(List,Chunksize). For example, to get a list of chunks 2 long, call n_length_chunks(List,2). This works for chunks of any size, ie, you could call n_length_chunks(List,4) to get [[1,2,3,4],[5,6,7,8],...]
n_length_chunks([],_) -> [];
n_length_chunks(List,Len) when Len > length(List) ->
[List];
n_length_chunks(List,Len) ->
{Head,Tail} = lists:split(Len,List),
[Head | n_length_chunks(Tail,Len)].
The much faster one is here, but is definitely harder to read, and is called in the same way: n_length_chunks_fast(List,2) (I've made one change to this compared with the one above, in that it pads the end of the list with undefined if the length of the list isn't cleanly divisible by the desired chunk length.
n_length_chunks_fast(List,Len) ->
LeaderLength = case length(List) rem Len of
0 -> 0;
N -> Len - N
end,
Leader = lists:duplicate(LeaderLength,undefined),
n_length_chunks_fast(Leader ++ lists:reverse(List),[],0,Len).
n_length_chunks_fast([],Acc,_,_) -> Acc;
n_length_chunks_fast([H|T],Acc,Pos,Max) when Pos==Max ->
n_length_chunks_fast(T,[[H] | Acc],1,Max);
n_length_chunks_fast([H|T],[HAcc | TAcc],Pos,Max) ->
n_length_chunks_fast(T,[[H | HAcc] | TAcc],Pos+1,Max);
n_length_chunks_fast([H|T],[],Pos,Max) ->
n_length_chunks_fast(T,[[H]],Pos+1,Max).
Tested on my (really old) laptop:
Your proposed solution took about 3 seconds.
My slow-but-readable one was slightly faster and takes about 1.5 seconds (still quite slow)
My fast version takes about 5 milliseconds.
For completeness, Isac's solution took about 180 milliseconds on my same machine.
Edit: wow, I need to read the complete question first. Oh well I'll keep here for posterity if it helps. As far as I can tell, there's not a good way to do this using list comprehensions. Your original version is slow because each iteration of sublist needs to traverse the list each time to get to each successive X, resulting in complexity just under O(N^2).
Or with a fold:
lists:foldr(fun(E, []) -> [[E]];
(E, [H|RAcc]) when length(H) < 2 -> [[E|H]|RAcc] ;
(E, [H|RAcc]) -> [[E],H|RAcc]
end, [], List).
I want to submit slightly complicated but more flexible (and mostly faster) solution of one proposed by #Tilman
split_list(List, Max) ->
element(1, lists:foldl(fun
(E, {[Buff|Acc], C}) when C < Max ->
{[[E|Buff]|Acc], C+1};
(E, {[Buff|Acc], _}) ->
{[[E],Buff|Acc], 1};
(E, {[], _}) ->
{[[E]], 1}
end, {[], 0}, List)).
so function part can be implemented as
part(List) ->
RevList = split_list(List, 2),
lists:foldl(fun(E, Acc) ->
[lists:reverse(E)|Acc]
end, [], RevList).
update
I've added reverse in case if you want to preserve order, but as I can see it adds no more than 20% of processing time.
You could do it like this:
1> {List1, List2} = lists:partition(fun(X) -> (X rem 2) == 1 end, List).
{[1,3,5|...],[2,4,6|...]}
2> lists:zipwith(fun(X, Y) -> [X, Y] end, List1, List2).
[[1,2],[3,4],[5,6]|...]
This takes ~73 milliseconds with a 10000 elements List on my computer. The original solution takes ~900 miliseconds.
But I would go with the recursive function anyway.
I was looking for a partition function which can split a large list to small amount of workers. With lkuty's partition you might get that one worker gets almost double work than all the others. If that's not what you want, here is a version which sublist lengths differ by at most 1.
Uses PropEr for testing.
%% #doc Split List into sub-lists so sub-lists lengths differ most by 1.
%% Does not preserve order.
-spec split_many(pos_integer(), [T]) -> [[T]] when T :: term().
split_many(N, List) ->
PieceLen = length(List) div N,
lists:reverse(split_many(PieceLen, N, List, [])).
-spec split_many(pos_integer(), pos_integer(), [T], [[T]]) ->
[[T]] when T :: term().
split_many(PieceLen, N, List, Acc) when length(Acc) < N ->
{Head, Tail} = lists:split(PieceLen, List),
split_many(PieceLen, N, Tail, [Head|Acc]);
split_many(_PieceLen, _N, List, Acc) ->
% Add an Elem to each list in Acc
{Appendable, LeaveAlone} = lists:split(length(List), Acc),
Appended = [[Elem|XS] || {Elem, XS} <- lists:zip(List, Appendable)],
lists:append(Appended, LeaveAlone).
Tests:
split_many_test_() ->
[
?_assertEqual([[1,2]], elibs_lists:split_many(1, [1,2])),
?_assertEqual([[1], [2]], elibs_lists:split_many(2, [1,2])),
?_assertEqual([[1], [3,2]], elibs_lists:split_many(2, [1,2,3])),
?_assertEqual([[1], [2], [4,3]], elibs_lists:split_many(3, [1,2,3,4])),
?_assertEqual([[1,2], [5,3,4]], elibs_lists:split_many(2, [1,2,3,4,5])),
?_assert(proper:quickcheck(split_many_proper1())),
?_assert(proper:quickcheck(split_many_proper2()))
].
%% #doc Verify all elements are preserved, number of groups is correct,
%% all groups have same number of elements (+-1)
split_many_proper1() ->
?FORALL({List, Groups},
{list(), pos_integer()},
begin
Split = elibs_lists:split_many(Groups, List),
% Lengths of sub-lists
Lengths = lists:usort(lists:map(fun erlang:length/1, Split)),
length(Split) =:= Groups andalso
lists:sort(lists:append(Split)) == lists:sort(List) andalso
length(Lengths) =< 2 andalso
case Lengths of
[Min, Max] -> Max == Min + 1;
[_] -> true
end
end
).
%% #doc If number of groups is divisable by number of elements, ordering must
%% stay the same
split_many_proper2() ->
?FORALL({Groups, List},
?LET({A, B},
{integer(1, 20), integer(1, 10)},
{A, vector(A*B, term())}),
List =:= lists:append(elibs_lists:split_many(Groups, List))
).
Here is a more general answer that works with any sublist size.
1> lists:foreach(fun(N) -> io:format("~2.10.0B -> ~w~n",[N, test:partition([1,2,3,4,5,6,7,8,9,10],N)] ) end, [1,2,3,4,5,6,7,8,9,10]).
01 -> [[1],[2],[3],[4],[5],[6],[7],[8],[9],[10]]
02 -> [[1,2],[3,4],[5,6],[7,8],[9,10]]
03 -> [[1,2,3],[4,5,6],[7,8,9],[10]]
04 -> [[1,2,3,4],[5,6,7,8],[10,9]]
05 -> [[1,2,3,4,5],[6,7,8,9,10]]
06 -> [[1,2,3,4,5,6],[10,9,8,7]]
07 -> [[1,2,3,4,5,6,7],[10,9,8]]
08 -> [[1,2,3,4,5,6,7,8],[10,9]]
09 -> [[1,2,3,4,5,6,7,8,9],[10]]
10 -> [[1,2,3,4,5,6,7,8,9,10]]
And the code to achieve this is stored inside a file called test.erl:
-module(test).
-compile(export_all).
partition(List, N) ->
partition(List, 1, N, []).
partition([], _C, _N, Acc) ->
lists:reverse(Acc) ;
partition([H|T], 1, N, Acc) ->
partition(T, 2, N, [[H]|Acc]) ;
partition([H|T], C, N, [HAcc|TAcc]) when C < N ->
partition(T, C+1, N, [[H|HAcc]|TAcc]) ;
partition([H|T], C, N, [HAcc|TAcc]) when C == N ->
partition(T, 1, N, [lists:reverse([H|HAcc])|TAcc]) ;
partition(L, C, N, Acc) when C > N ->
partition(L, 1, N, Acc).
It could probably be more elegant regarding the special case where C > N. Note that C is the size of the current sublist being constructed. At start, it is 1. And then it increments until it reaches the partition size of N.
We could also use a modified version of #chops code to let the last list contains the remaining items even if its size < N :
-module(n_length_chunks_fast).
-export([n_length_chunks_fast/2]).
n_length_chunks_fast(List,Len) ->
SkipLength = case length(List) rem Len of
0 -> 0;
N -> Len - N
end,
n_length_chunks_fast(lists:reverse(List),[],SkipLength,Len).
n_length_chunks_fast([],Acc,_Pos,_Max) -> Acc;
n_length_chunks_fast([H|T],Acc,Pos,Max) when Pos==Max ->
n_length_chunks_fast(T,[[H] | Acc],1,Max);
n_length_chunks_fast([H|T],[HAcc | TAcc],Pos,Max) ->
n_length_chunks_fast(T,[[H | HAcc] | TAcc],Pos+1,Max);
n_length_chunks_fast([H|T],[],Pos,Max) ->
n_length_chunks_fast(T,[[H]],Pos+1,Max).
I've slightly altered the implementation from #JLarky to remove the guard expression, which should be slightly faster:
split_list(List, Max) ->
element(1, lists:foldl(fun
(E, {[Buff|Acc], 1}) ->
{[[E],Buff|Acc], Max};
(E, {[Buff|Acc], C}) ->
{[[E|Buff]|Acc], C-1};
(E, {[], _}) ->
{[[E]], Max}
end, {[], Max}, List)).

Resources