Swift Range Operator with two unknown values - ios

If I have two unknown values, lets say x and y, what is the best way loop through all of the values between between those values?
For example, given the values x = 0 and y = 5 I would like to do something with the values 0, 1, 2, 3, 4, and 5. The result could exclude 0 and 5 if this is simpler.
Using Swift's Range operator, I could do something like this:
for i in x...y {
// Do something with i
}
Except I do not know if x or y is the greater value.
The Swift documentation for Range Operators states:
The closed range operator (a...b) defines a range that runs from a to b, and includes the values a and b. The value of a must not be greater than b.
There are a number of solutions here. A pretty straight forward one is:
let diff = y - x
for i in 0...abs(diff) {
let value = min(x, y) + i
// Do something with value
}
Is there a better, or more elegant way to achieve this?

I guess the most explicit way of writing it would be:
for i in min(a, b)...max(a, b) {
// Do something with i
}
To exclude the first and last value, you can increment your lower limit and use the Swift ..< syntax:
let lowerLimit = min(a, b) + 1
let upperLimit = max(a, b)
for i in lowerLimit..<upperLimit {
// Do something with i
}

Related

Is there a way to return a pair of integers using the let construct in standard ML?

I am trying to return a pair of sums using the let construct in sml. Every way I have tried will only return one value. I have tried creating a list by using cons (::) and then returning the list, but that gives an error as well.
val t = [(3,4), (4,5), (5,6)];
fun sumPairs(nil) = 0
| sumPairs((x,y)::zs) =
let
val sumFirst = x + sumPairs(zs)
val sumSecond = y + sumPairs(zs)
in
(sumFirst, sumSecond) <how would I return this as a tuple or list?>
end;
sumPairs(t);
The problem is not with (sumFirst, sumSecond) or with let specifically, but with the rest of your code.
The base case and the recursions say that sumPairs produces an int, not a pair of ints.
Because of this, there is a conflict when you try produce a pair.
Your base case should be (0,0), not 0, since it must be a pair.
You also need to deconstruct the result from the recursion since that produces a pair, not an integer.
Like this
fun sumPairs nil = (0, 0)
| sumPairs ((x,y)::zs) =
let
val (sumFirst, sumSecond) = sumPairs zs
in
(x + sumFirst, y + sumSecond)
end;

Swit map: error: cannot invoke 'map' with an argument list of type '((_) -> _)'

I can't understand why this one works:
var arr = [4,5,6,7]
arr.map() {
x in
return x + 2
}
while this one not
arr.map() {
x in
var y = x + 2
return y
}
with error
Playground execution failed: MyPlayground.playground:13:5: error:
cannot invoke 'map' with an argument list of type '((_) -> _)'
arr.map() {
The problem here is there error message. In general, when you see something like cannot invoke .. with ... it means that the compiler's type inference has just not worked.
In this case, you've run up against one of the limitations of inference within closures. Swift can infer the type of single-statement closures only, not multiple-statement ones. In your first example:
arr.map() {
x in
return x + 2
}
There's actually only one statement: return x + 2. However, in the second:
arr.map() {
x in
var y = x + 2
return y
}
There's an assignment statement (var y = x + 2), and then the return. So the error is a little misleading: it doesn't mean you "can't invoke map() with this type of argument", what it means to say is "I can't figure out what type x or y is".
By the way, in single-statement closures, there are two other things that can be inferred. The return statement:
arr.map() {
x in
x + 2
}
And the variable name itself:
arr.map() { $0 + 2 }
It all produces the same compiled code, though. So it's really a matter of taste which one you choose. (For instance, while I think the inferred return looks clean and easier to read, I don't like the $0, so I generally always put x in or something, even for very short closures. It's up to you, though, obviously.)
One final thing: since this is all really just syntax stuff, it's worth noting that the () isn't needed either:
arr.map { x in x + 2 }
As #MartinR pointed out, the compiler can infer some types from outer context as well:
let b: [Int] = arr.map { x in
var y = x + 2
return y
}
Which is worth bearing in mind. (it seems that the "one-statement" rule only applies when there's no other type info available)
Swift can't infer type every time. Even though it should see that y = x + 2 means y is an Int too. My guess is that Swift parses the closure in a certain order that makes it not aware of the return type ahead of time in your case.
This works:
arr.map() {
x -> Int in
var y = x + 2
return y
}

List comprehensions with float iterator in F#

Consider the following code:
let dl = 9.5 / 11.
let min = 21.5 + dl
let max = 40.5 - dl
let a = [ for z in min .. dl .. max -> z ] // should have 21 elements
let b = a.Length
"a" should have 21 elements but has got only 20 elements. The "max - dl" value is missing. I understand that float numbers are not precise, but I hoped that F# could work with that. If not then why F# supports List comprehensions with float iterator? To me, it is a source of bugs.
Online trial: http://tryfs.net/snippets/snippet-3H
Converting to decimals and looking at the numbers, it seems the 21st item would 'overshoot' max:
let dl = 9.5m / 11.m
let min = 21.5m + dl
let max = 40.5m - dl
let a = [ for z in min .. dl .. max -> z ] // should have 21 elements
let b = a.Length
let lastelement = List.nth a 19
let onemore = lastelement + dl
let overshoot = onemore - max
That is probably due to lack of precision in let dl = 9.5m / 11.m?
To get rid of this compounding error, you'll have to use another number system, i.e. Rational. F# Powerpack comes with a BigRational class that can be used like so:
let dl = 95N / 110N
let min = 215N / 10N + dl
let max = 405N / 10N - dl
let a = [ for z in min .. dl .. max -> z ] // Has 21 elements
let b = a.Length
Properly handling float precision issues can be tricky. You should not rely on float equality (that's what list comprehension implicitely does for the last element). List comprehensions on float are useful when you generate an infinite stream. In other cases, you should pay attention to the last comparison.
If you want a fixed number of elements, and include both lower and upper endpoints, I suggest you write this kind of function:
let range from to_ count =
assert (count > 1)
let count = count - 1
[ for i = 0 to count do yield from + float i * (to_ - from) / float count]
range 21.5 40.5 21
When I know the last element should be included, I sometimes do:
let a = [ for z in min .. dl .. max + dl*0.5 -> z ]
I suspect the problem is with the precision of floating point values. F# adds dl to the current value each time and checks if current <= max. Because of precision problems, it might jump over max and then check if max+ε <= max (which will yield false). And so the result will have only 20 items, and not 21.
After running your code, if you do:
> compare a.[19] max;;
val it : int = -1
It means max is greater than a.[19]
If we do calculations the same way the range operator does but grouping in two different ways and then compare them:
> compare (21.5+dl+dl+dl+dl+dl+dl+dl+dl) ((21.5+dl)+(dl+dl+dl+dl+dl+dl+dl));;
val it : int = 0
> compare (21.5+dl+dl+dl+dl+dl+dl+dl+dl+dl) ((21.5+dl)+(dl+dl+dl+dl+dl+dl+dl+dl));;
val it : int = -1
In this sample you can see how adding 7 times the same value in different order results in exactly the same value but if we try it 8 times the result changes depending on the grouping.
You're doing it 20 times.
So if you use the range operator with floats you should be aware of the precision problem.
But the same applies to any other calculation with floats.

Adding Overloaded Constructors to Implicit F# Type

I have created the following type using implicit type construction:
open System
type Matrix(sourceMatrix:double[,]) =
let rows = sourceMatrix.GetUpperBound(0) + 1
let cols = sourceMatrix.GetUpperBound(1) + 1
let matrix = Array2D.zeroCreate<double> rows cols
do
for i in 0 .. rows - 1 do
for j in 0 .. cols - 1 do
matrix.[i,j] <- sourceMatrix.[i,j]
//Properties
///The number of Rows in this Matrix.
member this.Rows = rows
///The number of Columns in this Matrix.
member this.Cols = cols
///Indexed Property for this matrix.
member this.Item
with get(x, y) = matrix.[x, y]
and set(x, y) value =
this.Validate(x,y)
matrix.[x, y] <- value
//Methods
/// Validate that the specified row and column are inside of the range of the matrix.
member this.Validate(row, col) =
if(row >= this.Rows || row < 0) then raise (new ArgumentOutOfRangeException("row is out of range"))
if(col >= this.Cols || col < 0) then raise (new ArgumentOutOfRangeException("column is out of range"))
However now I need to add the following overloaded constructor to this type (which is in C# here):
public Matrix(int rows, int cols)
{
this.matrix = new double[rows, cols];
}
The problem that I have is that it seems any overloaded constructors in an implicit type must have a parameter list that is a subset of the first constructor. Obviously the constructor I want to add does not meet this requirement. Is there any way to do this using implicit type construction? Which way should I do this? I'm pretty new to F# so if you could show the whole type with your changes in it I would greatly appreciate it.
Thanks in advance,
Bob
P.S. If you have any other suggestions to make my class more in the functional style please feel free to comment on that as well.
I would probably just do this:
type Matrix(sourceMatrix:double[,]) =
let matrix = Array2D.copy sourceMatrix
let rows = (matrix.GetUpperBound 0) + 1
let cols = (matrix.GetUpperBound 1) + 1
new(rows, cols) = Matrix( Array2D.zeroCreate rows cols )
unless we are talking about very large arrays which are created very often (i.e. copying the empty array becomes a performance bottleneck).
If you want to emulate the C# version, you need an explicit field that can be accessed from both constructors, like so:
type Matrix(rows,cols) as this =
[<DefaultValue>]
val mutable matrix : double[,]
do this.matrix <- Array2D.zeroCreate rows cols
new(source:double[,]) as this =
let rows = source.GetUpperBound(0) + 1
let cols = source.GetUpperBound(1) + 1
Matrix(rows, cols)
then
for i in 0 .. rows - 1 do
for j in 0 .. cols - 1 do
this.matrix.[i,j] <- source.[i,j]
BTW, there is also a matrix type in the F# PowerPack.

Scaling a number between two values

If I am given a floating point number but do not know beforehand what range the number will be in, is it possible to scale that number in some meaningful way to be in another range? I am thinking of checking to see if the number is in the range 0<=x<=1 and if not scale it to that range and then scale it to my final range. This previous post provides some good information, but it assumes the range of the original number is known beforehand.
You can't scale a number in a range if you don't know the range.
Maybe what you're looking for is the modulo operator. Modulo is basically the remainder of division, the operator in most languages is is %.
0 % 5 == 0
1 % 5 == 1
2 % 5 == 2
3 % 5 == 3
4 % 5 == 4
5 % 5 == 0
6 % 5 == 1
7 % 5 == 2
...
Sure it is not possible. You can define range and ignore all extrinsic values. Or, you can collect statistics to find range in run time (i.e. via histogram analysis).
Is it really about image processing? There are lots of related problems in image segmentation field.
You want to scale a single random floating point number to be between 0 and 1, but you don't know the range of the number?
What should 99.001 be scaled to? If the range of the random number was [99, 100], then our scaled-number should be pretty close to 0. If the range of the random number was [0, 100], then our scaled-number should be pretty close to 1.
In the real world, you always have some sort of information about the range (either the range itself, or how wide it is). Without further info, the answer is "No, it can't be done."
I think the best you can do is something like this:
int scale(x) {
if (x < -1) return 1 / x - 2;
if (x > 1) return 2 - 1 / x;
return x;
}
This function is monotonic, and has a range of -2 to 2, but it's not strictly a scaling.
I am assuming that you have the result of some 2-dimensional measurements and want to display them in color or grayscale. For that, I would first want to find the maximum and minimum and then scale between these two values.
static double[][] scale(double[][] in, double outMin, double outMax) {
double inMin = Double.POSITIVE_INFINITY;
double inMax = Double.NEGATIVE_INFINITY;
for (double[] inRow : in) {
for (double d : inRow) {
if (d < inMin)
inMin = d;
if (d > inMax)
inMax = d;
}
}
double inRange = inMax - inMin;
double outRange = outMax - outMin;
double[][] out = new double[in.length][in[0].length];
for (double[] inRow : in) {
double[] outRow = new double[inRow.length];
for (int j = 0; j < inRow.length; j++) {
double normalized = (inRow[j] - inMin) / inRange; // 0 .. 1
outRow[j] = outMin + normalized * outRange;
}
}
return out;
}
This code is untested and just shows the general idea. It further assumes that all your input data is in a "reasonable" range, away from infinity and NaN.

Resources