Understanding and Writing Parsers - parsing

I'm writing a program that requires me to create my first real, somewhat complicated parser. I would like to understand what parsing algorithms exists, as well as how to create a "grammar". So my question(s) are as follows:
1) How does one create a formal grammar that a parser can understand? What are the basic components of a grammar?
2) What parsing algorithms exists, and what kind of input does each exceed at parsing?
3) In light of the broad nature of the questions above, what are some good references I can read through to understand the answer to questions 1 and 2?
I'm looking for more of a broad overview with the keywords/topic areas I need so I can look into the details myself. Thanks everybody!

You generally write a context-free grammar G that describes a certain formal language L (e.g. the set of all syntactically valid C programs) which is simply a set of strings over a certain alphabet (think of all well-formed C programs; or of all well-formed HTML documents; or of all well-formed MARKDOWN posts; all of these are sets of finite strings over certain subsets of the ASCII character set). After that you come up with a parser for the given grammar---that is, an algorithm that, given a string w, decides whether the string w can be derived by the grammar G. (For example, the grammar of the C11 language describes the set of all well-formed C programs.)
Some types of grammars admit simple-to-implement parsers. An example of grammars that are often used in practice are LL grammars. A special subset of LL grammars, called the LL(1) grammars, have parsers that run in linear time (linear in the length of the string we're parsing).
There are more general parsing algorithms---most notably the Early parser and the CYK algorithm---that take as inpuit a string w and a grammar G and decide in time O(|w|^3) whether the string w is derivable by the grammar G. (Notice how cool this is: the algorithm takes the grammar as an agrument. But I don't think this is used in practice.)
I implemented the Early parser in Java some time ago. If your're insterested, the code is available on GitHub.
For a concrete example of the whole process, consider the language of all balanced strings of parenthesis (), (()), ((()))()(())(), etc. We can describe them with the following context-free grammar:
S -> (S) | SS | eps
where eps is the empty production. For example, we can derive the string (())() as follows: S => SS => (S)S => ((S))S => (())S => (())(S) => (())(). We can easily implement a parser for this grammar (left as exercise :-).
A very good references is the so-called dragon book: Compilers: Principles, Techniques, and Tools by Aho et al. It covers all the essential topics. Another good reference is the classic book Introduction to Automata Theory, Languages, and Computation by Hopcroft et al.

Related

How does LR parsing select a qualifying grammar production (to construct the parse tree from the leaves)?

I am reading a tutorial of the LR parsing. The tutorial uses an example grammar here:
S -> aABe
A -> Abc | b
B -> d
Then, to illustrate how the parsing algorithm works, the tutorial shows the process of parsing the word "abbcde" below.
I understand at each step of the algorithm, a qualifying production (namely a gramma rule, illustrated in column 2 in the table) is searched to match a segment of the string. But how does the LR parsing chooses among a set of qualifying productions (illustrate in column 3 in the table)?
An LR parse of a string traces out a rightmost derivation in reverse. In that sense, the ordering of the reductions applied is what you would get if you derived the string by always expanding out the rightmost nonterminal, then running that process backwards. (Try this out on your example - isn’t that neat?)
The specific mechanism by which LR parsers actually do this involves the use of a parsing automaton that tracks where within the grammar productions the parse happens to be, along with some lookahead information. There are several different flavors of LR parser (LR(0), SLR(1), LALR(1), LR(1), etc.), which differ on how the automaton is structured and how they use lookahead information. You may find it helpful to search for a tutorial on how these automata work, as that’s the heart of how LR parsers actually work.

Converting grammars to the most efficient parser

Is there an online algorithm which converts certain grammar to the most efficient parser possible?
For example: SLR/LR(k) such as k>=0
For the class of grammars you are discussing (xLR(k)), they are all linear time anyway, and it is impossible to do sublinear time if you have to examine every character.
If you insist on optimizing parse time, you should get a very fast LR parsing engine. LRStar used to be the cat's meow on this topic, but the guy behind it got zero reward from the world of "I want it for free" and pulled all instances of it off the net. You can settle for Bison.
Frankly most of your parsing time will be determined by how fast your parser can process individual characters, e.g., the lexer. Tune that first and you may discover there's no need to tune the parser.
First let's distinguish LR(k) grammars and LR(k) languages. A grammar may not be LR(1), but let's say, for example, LR(2). But the language it generates must have an LR(1) grammar -- and for that matter, it must have an LALR(1) grammar. The table size for such a grammar is essentially the same as for SLR(1) and is more powerful (all SLR(1) grammars are LALR(1) but not vice versa). So, there is really no reason not to use an LALR(1) parser generator if you are looking to do LR parsing.
Since parsing represents only a fraction of the compilation time in modern compilers when lexical analysis and code generation that contains peephole and global optimizations are taken into consideration, I would just pick a tool considering its entire set of features. You should also remember that one parser generator may take a little longer than another to analyze a grammar and to generate the parsing tables. But once that job is done, the table-driven parsing algorithm that will run in the actual compiler thousands of times should not vary significantly from one parser generator to another.
As far as tools for converting arbitrary grammars to LALR(1), for example (in theory this can be done), you could do a Google search (I have not done this). But since semantics are tied to the productions, I would want to have complete control over the grammar being used for parsing and would probably eschew such conversion tools.

Neural Networks For Generating New Programming Language Grammars

I have recently had the need to create an ANTLR language grammar for the purpose of a transpiler (Converting one scripting language to another). It occurs to me that Google Translate does a pretty good job translating natural language. We have all manner of recurrent neural network models, LSTM, and GPT-2 is generating grammatically correct text.
Question: Is there a model sufficient to train on grammar/code example combinations for the purpose of then outputting a new grammar file given an arbitrary example source-code?
I doubt any such model exists.
The main issue is that languages are generated from the grammars and it is next to impossible to convert back due to the infinite number of parser trees (combinations) available for various source-codes.
So in your case, say you train on python code (1000 sample codes), the resultant grammar for training will be the same. So, the model will always generate the same grammar irrespective of the example source code.
If you use training samples from a number of languages, the model still can't generate the grammar as it consists of an infinite number of possibilities.
Your example of Google translate works for real life translation as small errors are acceptable, but these models don't rely on generating the root grammar for each language. There are some tools that can translate programming languages example, but they don't generate the grammar, work based on the grammar.
Update
How to learn grammar from code.
After comparing to some NLP concepts, I have a list of issue that may arise and a way to counter them.
Dealing with variable names, coding structures and tokens.
For understanding the grammar, we'll have to breakdown the code to its bare minimum form. This means understanding what each and every term in the code means. Have a look at this example
The already simple expression is reduced to the parse tree. We can see that the tree breaks down the expression and tags each number as a factor. This is really important to get rid of the human element of the code (such as variable names etc.) and dive into the actual grammar. In NLP this concept is known as Part of Speech tagging. You'll have to develop your own method to do the tagging, by it's easy given that you know grammar for the language.
Understanding the relations
For this, you can tokenize the reduced code and train using a model based on the output you are looking for. In case you want to write code, make use of a n grams model using LSTM like this example. The model will learn the grammar, but extracting it is not a simple task. You'll have to run separate code to try and extract all the possible relations learned by the model.
Example
Code snippet
# Sample code
int a = 1 + 2;
cout<<a;
Tags
# Sample tags and tokens
int a = 1 + 2 ;
[int] [variable] [operator] [factor] [expr] [factor] [end]
Leaving the operator, expr and keywords shouldn't matter if there is enough data present, but they will become a part of the grammar.
This is a sample to help understand my idea. You can improve on this by having a deeper look at the Theory of Computation and understanding the working of the automata and the different grammars.
What you're describing is 'just' learning structure of Context-Free Grammars.
I'm not sure if this approach will actually work for your case, but it's a long-standing problem in NLP: grammar induction for Context-Free Grammars. An example introduction how to tackle this problem using statistical learning methods can be found in Charniak's Statistical Language Learning.
Note that what I described is about CFGs in general, but you might want to check induction for LL grammars, because parser generators mostly use these types of grammars.
I know nothing about ANTLR, but there are pretty good examples of translating natural language e.g. into valid SQL requests: http://nlpprogress.com/english/semantic_parsing.html#sql-parsing.

Generalized Bottom up Parser Combinators in Haskell

I am wondered why there is no generalized parser combinators for Bottom-up parsing in Haskell like a Parsec combinators for top down parsing.
( I could find some research work went during 2004 but nothing after
https://haskell-functional-parsing.googlecode.com/files/Ljunglof-2002a.pdf
http://www.di.ubi.pt/~jpf/Site/Publications_files/technicalReport.pdf )
Is there any specific reason for not achieving it?
This is because of referential transparency. Just as no function can tell the difference between
let x = 1:x
let x = 1:1:1:x
let x = 1:1:1:1:1:1:1:1:1:... -- if this were writeable
no function can tell the difference between a grammar which is a finite graph and a grammar which is an infinite tree. Bottom-up parsing algorithms need to be able to see the grammar as a graph, in order to enumerate all the possible parsing states.
The fact that top-down parsers see their input as infinite trees allows them to be more powerful, since the tree could be computationally more complex than any graph could be; for example,
numSequence n = string (show n) *> option () (numSequence (n+1))
accepts any finite ascending sequence of numbers starting at n. This has infinitely many different parsing states. (It might be possible to represent this in a context-free way, but it would be tricky and require more understanding of the code than a parsing library is capable of, I think)
A bottom up combinator library could be written, though it is a bit ugly, by requiring all parsers to be "labelled" in such a way that
the same label always refers to the same parser, and
there is only a finite set of labels
at which point it begins to look a lot more like a traditional specification of a grammar than a combinatory specification. However, it could still be nice; you would only have to label recursive productions, which would rule out any infinitely-large rules such as numSequence.
As luqui's answer indicates a bottom-up parser combinator library is not a realistic. On the chance that someone gets to this page just looking for haskell's bottom up parser generator, what you are looking for is called the Happy parser generator. It is like yacc for haskell.
As luqui said above: Haskell's treatment of recursive parser definitions does not permit the definition of bottom-up parsing libraries. Bottom-up parsing libraries are possible though if you represent recursive grammars differently. With apologies for the self-promotion, one (research) parser library that uses such an approach is grammar-combinators. It implements a grammar transformation called the uniform Paull transformation that can be combined with the top-down parser algorithm to obtain a bottom-up parser for the original grammar.
#luqui essentially says, that there are cases in which sharing is unobservable. However, it's not the case in general: many approaches to observable sharing exist. E.g. http://www.ittc.ku.edu/~andygill/papers/reifyGraph.pdf mentions a few different methods to achieve observable sharing and proposes its own new method:
This looping structure can be used for interpretation, but not for
further analysis, pretty printing, or general processing. The
challenge here, and the subject of this paper, is how to allow trees
extracted from Haskell hosted deep DSLs to have observable back-edges,
or more generally, observable sharing. This a well-understood problem,
with a number of standard solutions.
Note that the "ugly" solution of #liqui is mentioned by the paper under the name of explicit labels. The solution proposed by the paper is still "ugly" as it uses so called "stable names", but other solutions such as http://www.cs.utexas.edu/~wcook/Drafts/2012/graphs.pdf (which relies on PHOAS) may work.

Difference between an LL and Recursive Descent parser?

I've recently being trying to teach myself how parsers (for languages/context-free grammars) work, and most of it seems to be making sense, except for one thing. I'm focusing my attention in particular on LL(k) grammars, for which the two main algorithms seem to be the LL parser (using stack/parse table) and the Recursive Descent parser (simply using recursion).
As far as I can see, the recursive descent algorithm works on all LL(k) grammars and possibly more, whereas an LL parser works on all LL(k) grammars. A recursive descent parser is clearly much simpler than an LL parser to implement, however (just as an LL one is simpler than an LR one).
So my question is, what are the advantages/problems one might encounter when using either of the algorithms? Why might one ever pick LL over recursive descent, given that it works on the same set of grammars and is trickier to implement?
LL is usually a more efficient parsing technique than recursive-descent. In fact, a naive recursive-descent parser will actually be O(k^n) (where n is the input size) in the worst case. Some techniques such as memoization (which yields a Packrat parser) can improve this as well as extend the class of grammars accepted by the parser, but there is always a space tradeoff. LL parsers are (to my knowledge) always linear time.
On the flip side, you are correct in your intuition that recursive-descent parsers can handle a greater class of grammars than LL. Recursive-descent can handle any grammar which is LL(*) (that is, unlimited lookahead) as well as a small set of ambiguous grammars. This is because recursive-descent is actually a directly-encoded implementation of PEGs, or Parser Expression Grammar(s). Specifically, the disjunctive operator (a | b) is not commutative, meaning that a | b does not equal b | a. A recursive-descent parser will try each alternative in order. So if a matches the input, it will succeed even if b would have matched the input. This allows classic "longest match" ambiguities like the dangling else problem to be handled simply by ordering disjunctions correctly.
With all of that said, it is possible to implement an LL(k) parser using recursive-descent so that it runs in linear time. This is done by essentially inlining the predict sets so that each parse routine determines the appropriate production for a given input in constant time. Unfortunately, such a technique eliminates an entire class of grammars from being handled. Once we get into predictive parsing, problems like dangling else are no longer solvable with such ease.
As for why LL would be chosen over recursive-descent, it's mainly a question of efficiency and maintainability. Recursive-descent parsers are markedly easier to implement, but they're usually harder to maintain since the grammar they represent does not exist in any declarative form. Most non-trivial parser use-cases employ a parser generator such as ANTLR or Bison. With such tools, it really doesn't matter if the algorithm is directly-encoded recursive-descent or table-driven LL(k).
As a matter of interest, it is also worth looking into recursive-ascent, which is a parsing algorithm directly encoded after the fashion of recursive-descent, but capable of handling any LALR grammar. I would also dig into parser combinators, which are a functional way of composing recursive-descent parsers together.

Resources