How do we handle null classes at test time in a machine learning system. If I train my model on lets say 10 classes, and then I observe a class that does not belong to any of the 10 classes, is there a way to detect this occurrence? It is needed for activity recognition in a sliding window approach where each time step yields one of the 10 classes, however, actually, there are time-steps where nothing happens and so the algorithm should not classify.
This would be whats called outlier or novelty detection. Some basic info here. You would want to use a outlier detection algorithm first (where all 10 classes are your inliers) to filer out new classes that you haven't seen before. Then if it passes the outlier detector, you feed it into your classifier. There will be some false positives/negatives on the outlier stage - which will have an impact on what fraction of the data you classify correctly.
however, actually, there are time-steps where nothing happens and so the algorithm should not classify.
Perhaps then what you really should consider is a 11'th class of "no activity". If its real data that occurs regularly, you should treat it as such.
Related
I’m very new to machine learning.
I have a dataset with data given me by a f1 race. User is playing this game and is giving me this dataset.
With machine learning, I have to work with this data and when a user (I know they are 10) plays a game I have to recognize who’s playing.
The data consists of datagram packet occurred in 1/10 second freq, the packets contains the following Time, laptime, lapdistance, totaldistance, speed, car position, traction control, last lap time, fuel, gear,..
I’ve thought to use a kmeans used in a supervised way.
Which algorithm could be better?
The task must be a multiclass classification. The very first step in any machine learning activity is to define a score metric (https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/). That allows you to compare models between themselves and decide which is better. Then build a base model with random forest or/and logistic regression as suggested in another answer - they perform well out-of-the-box. Then try to play with features and understand which of them are more informative. And don't forget about a visualizations - they give many hints for data wrangling, etc.
this is somewhat a broad question, so I'll try my best
kmeans is unsupervised algorithm meaning it will find the classes itself and it best used when you know there are multiple classes but you don't know what exactly they are... using it with labeled data just means you will compute the distance of new vector v to each vector in the dataset and pick the one (or ones using majority vote) which give the min distance , this is not considered as machine learning
in this case when you do have the labels, supervised approach will yield much better results
I suggest try random forest and logistic regression at first, those are the most basic and common algorithms and they give pretty good results
if you haven't achieve the desired accuracy you can use deep learning and build a neural network with input layer as big as your packet's values and output layer of the number of classes, in between you can use one or multiple hidden layers with various nodes, but this is advanced approach and you better pick up some experience in machine learning field before pursue it
Note: the data is a time series, meaning that every driver has it's own behaviour of driving a car, so data should be considered as bulks of points, with this you can apply pattern matching technics, also there are a several neural networks build exactly for this data (like RNN) but this is far far advanced and much more difficult to implement
I am using tensorflow (object-detection) on my own dataset (drone recognition), also only 1 class named 'drone', after about 30000 steps trained, my result model can detect drone with very high accuracy, but I got a problem, I used ssd_inception_v2_coco model and its fine_tune_checkpoint on model zoo, right now sometimes in my real time detection, it detected human face as drone (very big different between 2 objects like that), I think because of the old checkpoint.
How can I prevent the detection of some object that have big different with my drone object, like human, dog, cat... Or can someone describe for me what problem here?
Sorry for my bad english
Even if you train an SSD for one class, it automatically creates another class called background. The background is trained using the regions of the training images that are not labeled as the desired classes (in your case, drone).
An easy way out is to add training samples that include images that have both drones and the things that you don't want to recognize as drones, in the same scene. Doing this and then increasing the number of epochs should improve the precision.
If you are doing an application where there are frequent occurences of some objects with drones, another possiblity is to actually train the network for those things too. This will increase your training workload, but improve the accuracy.
Some implementations of SSD have an option for hard negative mining of data, so that mistakes made during validation are specifically used with training. If you are familiar with the code, you might want to check if this is available.
I am experimenting with classification using neural networks (I am using tensorflow).
And unfortunately the training of my neural network gets stuck at 42% accuracy.
I have 4 classes, into which I try to classify the data.
And unfortunately, my data set is not well balanced, meaning that:
43% of the data belongs to class 1 (and yes, my network gets stuck predicting only this)
37% to class 2
13% to class 3
7% to class 4
The optimizer I am using is AdamOptimizer and the cost function is tf.nn.softmax_cross_entropy_with_logits.
I was wondering if the reason for my training getting stuck at 42% is really the fact that my data set is not well balanced, or because the nature of the data is really random, and there are really no patterns to be found.
Currently my NN consists of:
input layer
2 convolution layers
7 fully connected layers
output layer
I tried changing this structure of the network, but the result is always the same.
I also tried Support Vector Classification, and the result is pretty much the same, with small variations.
Did somebody else encounter similar problems?
Could anybody please provide me some hints how to get out of this issue?
Thanks,
Gerald
I will assume that you have already double, triple and quadruple checked that the data going in is matching what you expect.
The question is quite open-ended, and even a topic for research. But there are some things that can help.
In terms of better training, there's two normal ways in which people train neural networks with an unbalanced dataset.
Oversample the examples with lower frequency, such that the proportion of examples for each class that the network sees is equal. e.g. in every batch, enforce that 1/4 of the examples are from class 1, 1/4 from class 2, etc.
Weight the error for misclassifying each class by it's proportion. e.g. incorrectly classifying an example of class 1 is worth 100/43, while incorrectly classifying an example of class 4 is worth 100/7
That being said, if your learning rate is good, neural networks will often eventually (after many hours of just sitting there) jump out of only predicting for one class, but they still rarely end well with a badly skewed dataset.
If you want to know whether or not there are patterns in your data which can be determined, there is a simple way to do that.
Create a new dataset by randomly select elements from all of your classes such that you have an even number of all of them (i.e. if there's 700 examples of class 4, then construct a dataset by randomly selecting 700 examples from every class)
Then you can use all of your techniques on this new dataset.
Although, this paper suggests that even with random labels, it should be able to find some pattern that it understands.
Firstly you should check if your model is overfitting or underfitting, both of which could cause low accuracy. Check the accuracy of both training set and dev set, if accuracy on training set is much higher than dev/test set, the model may be overfiiting, and if accuracy on training set is as low as it on dev/test set, then it could be underfitting.
As for overfiiting, more data or simpler learning structures may work while make your structure more complex and longer training time may solve underfitting problem
if I train a deep neural network with (say) 10 classes and I feed the network a completely different image, is it reasonable to expect that the output layer's cells will not activate much, so I will know there is no object of the trained classes in the image?
My intuition says "Yes", but is it so? And what would be the best approach to this?
Thanks
During the supervised training you usually assume that during training you get complete representation of the future types of objects. Typically - these are all labeled instances. In your case - there are also "noise" instances, thus there are basically two main approaches:
As multi-class neural network has K output neurons, each representing the probability of being a member of a particular class, you can simply condition on these distribution to say that the new object does not belong to any of them. One particular approach is to check if min(p(y|x))<T (where p(y|x) is the activation of output neuron) for some threshold T. You can either set this value by hand, or through analysis of you "noise" instances (with you do have some for training). Simply pass them through your network and compare what value of T gives you best recognition rate
Add another one-class classifier (anomaly detector) before your network - so you will end up with the sequence of two classifiers, first is able to recognize if it is a noise or element of any of your classes (notice, that this can be trained without access to noise samples, see one-class classification or anomaly detection techniques.
You could also add another output to the network to represent noise, but this probably will not work well, as you will force your network to generate consistent internal representation for both noise vs data and inter-class decisions.
The answer to your question very much depends on your network architecture and the parameters used to train it. If you are trying to protect against false positives, we can typically set an arbitrary threshold value on the relevant output nodes.
More generally, learning algorithms mostly take the form of “closed set” recognition, where all testing classes are known at training time. However, a more realistic scenario for vision applications is “open set” recognition, where an incomplete knowledge of the world is present at training time and unknown classes can be submitted during testing.
This is an on-going area of research - please see this Open Set Recognition web page for plenty of resources on the subject.
In a particular application I was in need of machine learning (I know the things I studied in my undergraduate course). I used Support Vector Machines and got the problem solved. Its working fine.
Now I need to improve the system. Problems here are
I get additional training examples every week. Right now the system starts training freshly with updated examples (old examples + new examples). I want to make it incremental learning. Using previous knowledge (instead of previous examples) with new examples to get new model (knowledge)
Right my training examples has 3 classes. So, every training example is fitted into one of these 3 classes. I want functionality of "Unknown" class. Anything that doesn't fit these 3 classes must be marked as "unknown". But I can't treat "Unknown" as a new class and provide examples for this too.
Assuming, the "unknown" class is implemented. When class is "unknown" the user of the application inputs the what he thinks the class might be. Now, I need to incorporate the user input into the learning. I've no idea about how to do this too. Would it make any difference if the user inputs a new class (i.e.. a class that is not already in the training set)?
Do I need to choose a new algorithm or Support Vector Machines can do this?
PS: I'm using libsvm implementation for SVM.
I just wrote my Answer using the same organization as your Question (1., 2., 3).
Can SVMs do this--i.e., incremental learning? Multi-Layer Perceptrons of course can--because the subsequent training instances don't affect the basic network architecture, they'll just cause adjustment in the values of the weight matrices. But SVMs? It seems to me that (in theory) one additional training instance could change the selection of the support vectors. But again, i don't know.
I think you can solve this problem quite easily by configuring LIBSVM in one-against-many--i.e., as a one-class classifier. SVMs are one-class classifiers; application of an SVM for multi-class means that it has been coded to perform multiple, step-wise one-against-many classifications, but again the algorithm is trained (and tested) one class at a time. If you do this, then what's left after step-wise execution against the test set, is "unknown"--in other words, whatever data is not classified after performing multiple, sequential one-class classifications, is by definition in that 'unknown' class.
Why not make the user's guess a feature (i.e., just another dependent variable)? The only other option is to make it the class label itself, and you don't want that. So you would, for instance, add a column to your data matrix "user class guess", and just populate it with some value most likely to have no effect for those data points not in the 'unknown' category and therefore for which the user will not offer a guess--this value could be '0' or '1', but really it depends on how you have your data scaled and normalized).
Your first item will likely be the most difficult, since there are essentially no good incremental SVM implementations in existence.
A few months ago, I also researched online or incremental SVM algorithms. Unfortunately, the current state of implementations is quite sparse. All I found was a Matlab example, OnlineSVR (a thesis project only implementing regression support), and SVMHeavy (only binary class support).
I haven't used any of them personally. They all appear to be at the "research toy" stage. I couldn't even get SVMHeavy to compile.
For now, you can probably get away with doing periodic batch training to incorporate updates. I also use LibSVM, and it's quite fast, so it sould be a good substitute until a proper incremental version is implemented.
I also don't think SVM's can model the concept of an "unknown" sample by default. They typically work as a series of boolean classifiers, so a sample ends up as positively being classified as something, even if that sample is drastically different from anything seen previously. A possible workaround would be to model the ranges of your features, and randomly generate samples that exist outside of these ranges, and then add these to your training set.
For example, if you have an attribute called "color", which has a minimum value of 4 and a maximum value of 123, then you could add these to your training set
[({'color':3},'unknown'),({'color':125},'unknown')]
to give your SVM an idea of what an "unknown" color means.
There are algorithms to train an SVM incrementally, but I don't think libSVM implements this. I think you should consider whether you really need this feature. I see no problem with your current approach, unless the training process is really too slow. If it is, could you retrain in batches (i.e. after every 100 new examples)?
You can get libSVM to produce probabilities of class membership. I think this can be done for multiclass classification, but I'm not entirely sure about that. You will need to decide some threshold at which the classification is not certain enough and then output 'Unknown'. I suppose something like setting a threshold on the difference between the most likely and second most likely class would achieve this.
I think libSVM scales to any number of new classes. The accuracy of your model may well suffer by adding new classes, however.
Even though this question is probably out of date, I feel obliged to give some additional thoughts.
Since your first question has been answered by others (there is no production-ready SVM which implements incremental learning, even though it is possible), I will skip it. ;)
Adding 'Unknown' as a class is not a good idea. Depending on it's use, the reasons are different.
If you are using the 'Unknown' class as a tag for "this instance has not been classified, but belongs to one of the known classes", then your SVM is in deep trouble. The reason is, that libsvm builds several binary classifiers and combines them. So if you have three classes - let's say A, B and C - the SVM builds the first binary classifier by splitting the training examples into "classified as A" and "any other class". The latter will obviously contain all examples from the 'Unknown' class. When trying to build a hyperplane, examples in 'Unknown' (which really belong to the class 'A') will probably cause the SVM to build a hyperplane with a very small margin and will poorly recognizes future instances of A, i.e. it's generalization performance will diminish. That's due to the fact, that the SVM will try to build a hyperplane which separates most instances of A (those officially labeled as 'A') onto one side of the hyperplane and some instances (those officially labeled as 'Unknown') on the other side .
Another problem occurs if you are using the 'Unknown' class to store all examples, whose class is not yet known to the SVM. For example, the SVM knows the classes A, B and C, but you recently got example data for two new classes D and E. Since these examples are not classified and the new classes not known to the SVM, you may want to temporarily store them in 'Unknown'. In that case the 'Unknown' class may cause trouble, since it possibly contains examples with enormous variation in the values of it's features. That will make it very hard to create good separating hyperplanes and therefore the resulting classifier will poorly recognize new instances of D or E as 'Unknown'. Probably the classification of new instances belonging to A, B or C will be hindered as well.
To sum up: Introducing an 'Unknown' class which contains examples of known classes or examples of several new classes will result in a poor classifier. I think it's best to ignore all unclassified instances when training the classifier.
I would recommend, that you solve this issue outside the classification algorithm. I was asked for this feature myself and implemented a single webpage, which shows an image of the object in question and a button for each known class. If the object in question belongs to a class which is not known yet, the user can fill out another form to add a new class. If he goes back to the classification page, another button for that class will magically appear. After the instances have been classified, they can be used for training the classifier. (I used a database to store the known classes and reference which example belongs to which class. I implemented an export function to make the data SVM-ready.)