I've created a couple of tutorial-like shiny apps that I want my student to be able to access without having to install R on their local machine.
I am aware of shiny server (and a free shiny server pro version for teachers, which I should be elegible to) as well as of the different plans offered at shinyapp.io.
We would have about 600-700 students using the app but - as everybody might expect - there will be a significant peak usage in the month right before the final exam, hence I fear that even a 2000 active hours plan on shinyapp.io might not be enough in this specific month but way to big when students are on holiday.
So my questions is:
Does anyone (other academics?) have (had) the same decision to make and has some advice/experience.
Are there any other alternative ways of getting the app to the public except: local, shiny server or shinyapps.io?
If this is the wrong platform to ask such a question please do point me to the appropriate one.
Related
One of the features of Erlang (and, by definition, Elixir) is that you can do hot code swap. However, this seems to be at odd with Docker, where you would need to stop your instances and restart new ones with new images holding the new code. This essentially seem to be what everyone does.
This being said, I also know that it is possible to use one hidden node to distribute updates to all other nodes over network. Of course, just like that is sounds like asking for trouble, but...
My question would be the following: has anyone tried and achieved with reasonable success to set up a Docker-based infrastructure for Erlang/Elixir that allowed Hot-code swapping? If so, what are the do's, don'ts and caveats?
The story
Imagine a system to handle mobile phone calls or mobile data access (that's what Erlang was created for). There are gateway servers that maintain the user session for the duration of the call, or the data access session (I will call it the session going forward). Those server have an in-memory representation of the session for as long as the session is active (user is connected).
Now there is another system that calculates how much to charge the user for the call or the data transfered (call it PDF - Policy Decision Function). Both systems are connected in such a way that the gateway server creates a handful of TCP connections to PDF and it drops users sessions if those TCP connections go down. The gateway can handle a few hundred thousand customers at a time. Whenever there is an event that the user needs to be charged for (next data transfer, another minute of the call) the gateway notifies PDF about the fact and PDF subtracts a specific amount of money from the user account. When the user account is empty PDF notifies the gateway to disconnect the call (you've run out of money, you need to top up).
Your question
Finally let's talk about your question in this context. We want to upgrade a PDF node and the node is running on Docker. We create a new Docker instance with the new version of the software, but we can't shut down the old version (there are hundreds of thousands of customers in the middle of their call, we can't disconnect them). But we need to move the customers somehow from the old PDF to the new version. So we tell the gateway node to create any new connections with the updated node instead of the old PDF. Customers can be chatty and also some of them may have a long-running data connections (downloading Windows 10 iso) so the whole operation takes 2-3 days to complete. That's how long it can take to upgrade one version of the software to another in case of a critical bug. And there may be dozens of servers like this one, each one handling hundreds thousands of customers.
But what if we used the Erlang release handler instead? We create the relup file with the new version of the software. We test it properly and deploy to PDF nodes. Each node is upgraded in-place - the internal state of the application is converted, the node is running the new version of the software. But most importantly, the TCP connection with the gateway server has not been dropped. So customers happily continue their calls or are downloading the latest Windows iso while we are upgrading the system. All is done in 10 seconds rather than 2-3 days.
The answer
This is an example of a specific system with specific requirements. Docker and Erlang's Release Handling are orthogonal technologies. You can use either or both, it all boils down to the following:
Requirements
Cost
Will you have enough resources to test both approaches predictably and enough patience to teach your Ops team so that they can deploy the system using either method? What if the testing facility cost millions of pounds (because of the required hardware) and can use only one of those two methods at a time (because the test cycle takes days)?
The pragmatic approach might be to deploy the nodes initially using Docker and then upgrade them with Erlang release handler (if you need to use Docker in the first place). Or, if your system doesn't need to be available during the upgrade (as the example PDF system does), you might just opt for always deploying new versions with Docker and forget about release handling. Or you may as well stick with release handler and forget about Docker if you need quick and reliable updates on-the-fly and Docker would be only used for the initial deployment. I hope that helps.
I just moved to .Net programming and built a website based on ASP.NET MVC 5 framework.
I come from php programming and I have to admit that MVC has some good advantages.
However , when it comes to deploy website on the internet I'm a bit lost.
I decided to go on Azure, while it seems to much problem to deploy the Microsoft framework on a linux servers ( and it s does not seem optimized)
However I don 't understand at all the pricing policy with this cloud system.
http://azure.microsoft.com/en-us/pricing/details/websites/
What is a Compute instance ?
And what is this hour rate ?
Does it mean that no one access to your website during one hour this won't be charged ?
The memory they mentioned is it RAM memory ?
If yes it's seems to be very few compared to a normal server.
I'm looking for something enough fast.
Moreover I developed my website with a PostgreSQL, but I have the impression that I have to order a separate virtual machine which will host my database.
I'm sorry if my questions are a bit vague, but it's so much different than a simple Apache server.
A compute instance on Azure, is something that has a CPU reserved for you. This can mean, it is not used at all and just waiting for your command.
Examples of compute engines are:
Virtual Machine
Web site
You can run a free Website on Azure. You cannot use your own domain (at least not supported by Azure), and they will stop when not used. This means the first request is slow, the second and later requests are good. When you get too many requests, it will not fit anymore in a free site, but a startup will fit.
If you are outsite the free range, Azure bills per hour (or even minute), that you have the site (or virtual machine) active.
The RAM seems small, but if you have no UI running, you need a lot less RAM.
The advantage of Azure is you can run on a small cheap machine, but you can upgrade very fast, even for a few hours.
I have already asked a question regarding a simple fault-tolerant soft real-time web application for a pizza delivery shop.
I have gotten really nice comments and answers there, but I disagree in that it is a true web service. Rather than a web service, it is more of a real-time system to accept orders from customers, control the dispatching of these orders and control the vehicles that deliver those orders in real time.
Moreover, unlike a 'true' web service this system is not intended to have many users - it is just a few dispatchers (telephone operators) and a few delivery drivers that will use it (as for now I have no requirement to provide direct access to the service to the actual customers; only the dispatchers and delivery drivers will have the direct access).
Hence this question is a bit more general.
I have found that in order to make a right choice for a NoSQL data storage option for this application first thing that I have to do is to make a choice between CA, PA and CP according to the CAP theorem.
Now, the Building Web Applications with Erlang book says that "while it [Mnesia] is not a SQL database, it is a CA database like a SQL database. It will not handle network partition". The same book says that the CouchDB database is a PA database.
Having that in mind, I think that the very first thing that I need to do with my application is to decide what the 'fault-tolerance' term means regarding to CAP.
The simple requirement that I have is to have the application available 24/7(R1). The other one is that there is no need to scale, the application will have a very modest amount of users (it is probably not possible to have thousands of dispatchers) (R2).
Now, does R1 require the application to provide Consistency, Availability and Partition Tolerance and with what priorities?
What type of data storage option will better handle the following issues:
Providing 24/7 availability for a dispatcher (a person who accepts phone calls from customers and who uses a CRM) to look up customer records and put orders into the system;
Looking up current ongoing served orders and their status (placed, baking, dispatched, delivering, delivered) in real time;
Keep track of all working vehicles' locations and their payloads in real time;
Recover any part of the system after system crash or network crash to continue providing 1,2 and 3;
To sum it up: What kind of Data Storage (CA, PA or CP) will suite the system described above better? What kind of Data Storage will better satisfy the R1 requirement?
For your 24/ requirement you are searching a database with (High) Availability because you want your requests to succeed everytime (even if they are only error results).
A netsplit would bringt your whole system down, when you have no partition tolerance
Consistency is nice to have, but you can only have 2 of 3.
Your best bet will be a PA solution. I highly recomment a solution which has been inspired by Amazon Dynamo. The best known dynamo implementations are riak and couchdb. Riak even allows you to change PA to some other form by tuning the read and write replicas.
First, don't confuse CAP "Availability" with "High Availability". They have nothing to do with each other. The A in CAP simply means "All DB nodes can answer queries". To get High Availability, you must be in multiple data centers, you must have robust documented procedures for maintenance, expansion, etc. None of that depends on your CAP choice.
Second, be realistic about your requirements. A stock-trading application might have a requirement for 100% uptime, because every second of downtime could loose millions of dollars. On the other hand, I'm guessing your pizza joint might loose tens of dollars for every minute it's down. So it doesn't make sense to spend millions trying to keep it up. Try to compute your actual costs.
Third, always evaluate your choice vs mainstream. You could just go CA (MySQL) and quickly fail-over to the slaves when problems happen. Be realistic about the costs (and risks) of building on new technology. If you really expect your system to run for 5 years without downtime, ask for proof that someone else has run that database for 5 years without downtime.
If you go "AP" and have remote people (drivers, etc.) then you'll need to write an app that stores their data on their phone and sends it in the background (with retries). Of course, you could do this regardless of weather your database was CA or AP.
If you want high uptimes, you can either:
Increase MTBF (Mean Time Between Failures) - Buy redundant power supplies, buy dual ethernet cards, etc..
Decrease MTTR (Mean Time To Recovery) - Just make sure when failure happens you can recover quickly. (Fail over to slave)
I've seen people spend tens of thousands of dollars on MTBF, only to be down for 8 hours while they restore their backup. It makes more sense to ensure MTTR is low before attacking MTBF.
Our company provides web-based management software (servicedesk, helpdesk, timesheet, etc) for our clients.
One of them have been causing a great headache for some months complaining about the connection speed with our servers.
In our individual tests, the connection and response speeds are always great.
Some information about this specific client :
They have about 300 PC's on their local network, all using the same bandwith/server for internet access.
They dont allow us to ping their server, so we cant establish a trace route.
They claim every other site (google, blogs, news, etc) are always responding fast. We know for a fact they have no intention to mislead us and know this to be true.
They might have up to 100 PC's simulateneously logged in our software at any given time. They have a need to increase that amount up to 300 so this is a major issue.
They are helpfull and colaborative in this issue we are trying to resolve for a long time.
Some information about our server and software :
We have been able to allocate more then 400 users at a single time without major speed losses for other clients.
We have gone extensive lengths to make good use of data caching and opcode caching in the software itself, and we did notice the improvement (from fast to faster)
There are no database, CPU or memory bottlenecks or leaks. Other clients are able to access the server just fine.
We have little to no knowledge on how to do some analyzing on specific end-user problems (Apache running under Windows server), and this is where I could use a lot of help.
Anything that might be related to Apache configuration would also be helpfull.
While all signs points to it being an internal problem in this specific client network, we are dedicating this effort to solve that too, if that is the case, but do not have capable or instructed professionals to deal with network problems (they do, however, while their main argument is that 'all other sites are fast, only yours is slow')
you might want to have a look at the tools from google "page speed family": http://code.google.com/speed/page-speed/docs/overview.html
your customer should maybe run the page speed extension for you. maybe then you can find out what is the problem: http://code.google.com/speed/page-speed/docs/extension.html
What, at a minimum, should an application health-monitoring system do for you (the developer) and/or your boss (the IT Manager) and/or the operations (on-call) staff?
What else should it do above the minimum requirements?
Is monitoring the 'infrastructure' applications (ms-exchange, apache, etc.) sufficient or do individual user applications, web sites, and databases also need to be monitored?
if the latter, what do you need to know about them?
ADDENDUM: thanks for the input, i was really looking for application-level monitoring not infrastructure monitoring, but it is good to know about both
Whether the application is running.
Unusual cpu/memory/network usage.
Report any unhandled exceptions.
Status of various modules (if applicable).
Status of external components (databases, webservices, fileservers, etc.)
Number of pending background tasks (if applicable).
Maybe track usage of the application and report statistics on most/less used functionalities so you know where optimizations are most beneficial.
The answer is 'it depends'. Why do you need to monitor? How large is your operations staff? Do you need reporting? What is the application environment? Who cares if the application fails? Who cares if an exception happens? Are any of the errors recoverable? I could ask questions like these for a long time.
Great question.
We've been looking for some application-level monitoring solution for our needs some time ago without any luck. Popular monitoring solution are mostly addressed to monitor infrastrcture and - in my opinion - they are too complicated for a requirements of most of small and mid-sized companies.
We required (mainly) following features:
alerts - we wanted to know about
incident as fast as possible
painless management - hosted service wouldbe
the best
visualizations - it's good to know what is going on and take some knowledge from the data
Because we didn't find suitable solution we started to write our own. Finally we've ended with up-and-running service called AlertGrid. (You can check it for free of course.)
The idea behind it is to provide an easy way to handle custom monitoring scenarios. Integration API is very simple (one function with two required parameters). At the momment we and others are using it for:
monitor scheduled tasks (cron jobs)
monitor entire application logic execution
alert on errors in applications
we are also working on examples of basic infrastructure monitoring using AlertGrid
This is such an open ended question, but I would start with physical measurements.
1. Are all the machines I think are hosting this site pingable?
2. Are all the machines which should be serving content actually serving some content? (Ideally this would be hit from an external network.)
3. Is each expected service on each machine running?
3a. Have those services run recently?
4. Does each machine have hard drive space left? (Don't forget the db)
5. Have these machines been backed up? When was the last time?
Once one lays out the physical monitoring of the systems, one can address those specific to a system?
1. Can an automated script log in? How long did it take?
2. How many users are live? Have there been a million fake accounts added?
...
These sorts of questions get more nebulous, and can be very system specific. They also usually can be derived reactively when responding to phsyical measurements. Hard drive fill up, maybe the web server logs got filled up because a bunch of agents created too many fake users. That kind of thing.
While plan A shouldn't necessarily be reactive, it is the way many a site setup a monitoring system.
Minimum: make sure it is running :)
However, some other stuff would be very useful. For example, the CPU load, RAM usage and (in multiuser systems) which user is running what. Also, for applications that access network, a list of network connections for each app. And (if you have access to client computer(s)) it would be cool to be able to see the 'window title' of the app - maybe check each 2-3 minutes if it changed and save it. Also, a list of files open by the application could be very useful, but it is not a must.
I think this is fairly simple - monitor so that you can be warned early enough before something goes wrong. That means monitor dependencies and the application itself.
It's really hard to provide specifics if you're not going to give details on the application you're monitoring, so I'd say use that as a general rule.
At a minimum you want to know that the system is healthy. This is subjective in what defines your system is healthy. Is it computers are up, the needed resources exist, the data is flowing through the system, the data is properly producing results, etc, etc.
In my project we do monitoring of most of this and then some. It really comes down to what is the highest level that you can use to analyze that everything is working. In our case we need to know down to the data output. If you just need to know down to the are these machines up it saves you on trying to show an inexperienced end user what is wrong.
There are also "off the shelf" tools that will do a lot of the hard work for you if you are just looking too hard into data results. I particularly liked Nagios when I was looking around but we needed more than it could easily show so I wrote our own monitoring system. Basically we also watch for "peculiarities" in the system, memory / cpu spikes, etc...
thanks everyone for the input, i was really looking for application-level monitoring not infrastructure monitoring, but it is good to know about both
the difference is:
infrastructure monitoring would be servers plus MS Exchange Server, Apache, IIS, and so forth
application monitoring would be user machines and the specific programs that they use to do their jobs, and/or servers plus the data-moving/backend applications that they run to keep the data flowing
sometimes it's hard to draw the line - an oversimplified definition might be "if your team wrote it, it's an application; if you bought it, it's infrastructure"
i think in practice it is best to monitor both
What you need to do is to break down the business process of the application and then have the software emit events at major business components. In addition, you'll need to create end to end synthetic transactions (eg. emulating end users clicking on a website). All that data would be fed into an monitoring tool. In the past, I've done JMX for applications of which flowed into Tivoli Monitoring's JMX Adapter and then I've done scripts that implement a "fake user" and then pipe in the results into Tivoli Monitoring's Script Adapter. Tivoli Monitoring takes the data and then creates application health and performance charts from that raw data.