iOS Metal Shader - Texture read and write access? - ios

I'm using a metal shader to draw many particles onto the screen. Each particle has its own position (which can change) and often two particles have the same position. How can I check if the texture2d I write into does not have a pixel at a certain position yet? (I want to make sure that I only draw a particle at a certain position if there hasn't been drawn a particle yet, because I get an ugly flickering if many particles are drawn at the same positon)
I've tried outTexture.read(particlePosition), but this obviously doesn't work, because of the texture access qualifier, which is access::write.
Is there a way I can have read and write access to a texture2d at the same time? (If there isn't, how could I still solve my problem?)

There are several approaches that could work here. In concurrent systems programming, what you're talking about is termed first-write wins.
1) If the particles only need to preclude other particles from being drawn (and aren't potentially obscured by other elements in the scene in the same render pass), you can write a special value to the depth buffer to signify that a fragment has already been written to a particular coordinate. For example, you'd turn on depth test (using the depth compare function Equal), clear the depth buffer to some distant value (like 1.0), and then write a value of 0.0 to the depth buffer in the fragment function. Any subsequent write to a given pixel will fail to pass the depth test and will not be drawn.
2) Use framebuffer read-back. On iOS, Metal allows you to read from the currently-bound primary renderbuffer by attributing a parameter to your fragment function with [[color(0)]]. This parameter will contain the current color value in the renderbuffer, which you can test against to determine whether it has been written to. This does require you to clear the texture to a predetermined color that will never otherwise be produced by your fragment function, so it is more limited than the above approach, and possibly less performant.
All of the above applies whether you're rendering to a drawable's texture for direct presentation to the screen, or to some offscreen texture.

To answer the read and write part : you can specify a read/write access for the output texture as such :
texture2d<float, access::read_write> outTexture [[texture(1)]],
Also, your texture descriptor must specify usage :
textureDescriptor?.usage = [.shaderRead, .shaderWrite]

Related

Write pixel data to certain mipmap level of texture2d

As you might know, Metal Shading Language allows few ways to read pixel data from texture2d in the kernel function. It can be either simple read(short2 coord) or sample(float2 coord, [different additional parameters]). But I noticed, that when it comes to writing something into texture, there's only write method.
And the problem here is that sample method allows to sample from certain mipmap level which is very convenient. Developer just needs to create a sampler with mipFilter and use normalized coordinates.
But what if I want to write into certain mipmap level of the texture? The thing is that write method doesn't have mipmap parameter the way sample method has and I cannot find any alternative for that.
I'm pretty sure there should be a way to choose mipmap level for writing data to the texture, because Metal Performance Shaders framework has solutions where mipmaps of textures are being populated.
Thanks in advance!
You can do this with texture views.
The purpose of texture views is to reinterpret the contents of a base texture by selecting a subset of its levels and slices and potentially reading/writing its pixels in a different (but compatible) pixel format.
The -newTextureViewWithPixelFormat:textureType:levels:slices: method on the MTLTexture protocol returns a new instance of id<MTLTexture> that has the first level specified in the levels range as its base mip level. By creating one view per mip level you wish to write to, you can "target" each level in the original texture.
For example, to create a texture view on the second mip level of a 2D texture, you might call the method like this:
id<MTLTexture> viewTexture =
[baseTexture newTextureViewWithPixelFormat:baseTexture.pixelFormat
textureType:baseTexture.textureType
levels:NSMakeRange(1, 1)
slices:NSMakeRange(0, 1)];
When binding this new texture as an argument, its mip level 0 will correspond to mip level 1 of its base texture. You can therefore use the ordinary texture write function in a shader to write to the selected mip level:
myShaderTexture.write(color, coords);

What can vertex function do except for mapping to clip space?

The Metal Shading Language includes a lot of mathematic functions, but it seems most of the codes inside Metal official documentation just use it to map vertexes from pixel space to clip space like
RasterizerData out;
out.clipSpacePosition = vector_float4(0.0, 0.0, 0.0, 1.0);
float2 pixelSpacePosition = vertices[vertexID].position.xy;
vector_float2 viewportSize = vector_float2(*viewportSizePointer);
out.clipSpacePosition.xy = pixelSpacePosition / (viewportSize / 2.0);
out.color = vertices[vertexID].color;
return out;
Except for GPGPU using kernel functions to do parallel computation, what things that vertex function can do, with some examples? In a game, if all vertices positions are calculated by the CPU, why GPU still matters? What does vertex function do usually?
Vertex shaders compute properties for vertices. That's their point. In addition to vertex positions, they also calculate lighting normals at each vertex. And potentially texture coordinates. And various material properties used by lighting and shading routines. Then, in the fragment processing stage, those values are interpolated and sent to the fragment shader for each fragment.
In general, you don't modify vertices on the CPU. In a game, you'd usually load them from a file into main memory, put them into a buffer and send them to the GPU. Once they're on the GPU you pass them to the vertex shader on each frame along with model, view, and projection matrices. A single buffer containing the vertices of, say, a tree or a car's wheel might be used multiple times. Each time all the CPU sends is the model, view, and projection matrices. The model matrix is used in the vertex shader to reposition and scale the vertice's positions in world space. The view matrix then moves and rotates the world around so that the virtual camera is at the origin and facing the appropriate way. Then the projection matrix modifies the vertices to put them into clip space.
There are other things a vertex shader can do, too. You can pass in vertices that are in a grid in the x-y plane, for example. Then in your vertex shader you can sample a texture and use that to generate the z-value. This gives you a way to change the geometry using a height map.
On older hardware (and some lower-end mobile hardware) it was expensive to do calculations on a texture coordinate before using it to sample from a texture because you lose some cache coherency. For example, if you wanted to sample several pixels in a column, you might loop over them adding an offset to the current texture coordinate and then sampling with the result. One trick was to do the calculation on the texture coordinates in the vertex shader and have them automatically interpolated before being sent to the fragment shader, then doing a normal look-up in the fragment shader. (I don't think this is an optimization on modern hardware, but it was a big win on some older models.)
First, I'll address this statement
In a game, if all vertices positions are calculated by the CPU, why GPU still matters? What does vertex function do usually?
I don't believe I've seen anyone calculating positions for meshes that will be later used to render them on a GPU. It's slow, you would need to get all this data from CPU to a GPU (which means copying it through a bus if you have a dedicated GPU). And it's just not that flexible. There are much more things other than vertex positions that are required to produce any meaningful image and calculating all this stuff on CPU is just wasteful, since CPU doesn't care for this data for the most part.
The sole purpose of vertex shader is to provide rasterizer with primitives that are in clip space. But there are some other uses that are mostly tricks based on different GPU features.
For example, vertex shaders can write out some data to buffers, so, for example, you can stream out transformed geometry if you don't want to transform it again at a later vertex stage if you have multi-pass rendering that uses the same geometry in more than one pass.
You can also use vertex shaders to output just one triangle that covers the whole screen, so that fragment shaders gets called one time per pixel for the whole screen (but, honestly, you are better of using compute (kernel) shaders for this).
You can also write out data from vertex shader and not generate any primitives. You can do that by generating degenerate triangles. You can use this to generate bounding boxes. Using atomic operations you can update min/max positions and read them at a later stage. This is useful for light culling, frustum culling, tile-based processing and many other things.
But, and it's a BIG BUT, you can do most of this stuff in a compute shader without incurring GPU to run all the vertex assembly pipeline. That means, you can do full-screen effects using just a compute shader (instead of vertex and fragment shader and many pipeline stages in between, such as rasterizer, primitive culling, depth testing and output merging). You can calculate bounding boxes and do light culling or frustum culling in compute shader.
There are reasons to fire up the whole rendering pipeline instead of just running a compute shader, for example, if you will still use triangles that are output from vertex shader, or if you aren't sure how primitives are laid out in memory so you need vertex assembler to do the heavy lifting of assembling primitives. But, getting back to your point, almost all of the reasonable uses for vertex shader include outputting primitives in clip space. If you aren't using resulting primitives, it's probably best to stick to compute shaders.

Most efficient way of discarding pixel shader calculations with OpenGL ES

I have multiple texture reads in my fragment shader, and I am supposedly doing bad things, like using the discard command and conditionals inside the shader.
The thing is, I am rendering to a texture and I want to reuse it in following passes with other shaders, that do not have to operate on pixels that were previously "discarded". This is for performance. The thing is, I need also to discard calculations if uniforms are out of certain ranges (which I read from another texture): imagine a loop with these shaders running always on the same textures, which are not cleared.
So what I have now, is a terrible performance. One idea I thought about is using glFragDepth together with the depth buffer and use that to fire depth testing in order to discard some pixels. But this does not work with the fact I want to have ranges.
Is there any alternative?
You could enable blending, and set the alpha values of pixels you don't want to render to zero. Setup:
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_BLEND);
Then in the fragment shader, where you previously called discard:
...
if (condition) {
discard;
}
...
Set the alpha to zero instead:
float alpha = float(condition);
...
gl_FragColor(r, g, b, alpha);
Whether this will perform better than discarding pixels could be very system dependent. But if you're looking for alternatives, it's worth trying.

Difference between Texture2D and Texture2DMS in DirectX11

I'm using SharpDX and I want to do antialiasing in the Depth buffer. I need to store the Depth Buffer as a texture to use it later. So is it a good idea if this texture is a Texture2DMS? Or should I take another approach?
What I really want to achieve is:
1) Depth buffer scaling
2) Depth test supersampling
(terms I found in section 3.2 of this paper: http://gfx.cs.princeton.edu/pubs/Cole_2010_TFM/cole_tfm_preprint.pdf
The paper calls for a depth pre-pass. Since this pass requires no color, you should leave the render target unbound, and use an "empty" pixel shader. For depth, you should create a Texture2D (not MS) at 2x or 4x (or some other 2Nx) the width and height of the final render target that you're going to use. This isn't really "supersampling" (since the pre-pass is an independent phase with no actual pixel output) but it's similar.
For the second phase, the paper calls for doing multiple samples of the high-resolution depth buffer from the pre-pass. If you followed the sizing above, every pixel will correspond to some (2N)^2 depth values. You'll need to read these values and average them. Fortunately, there's a hardware-accelerated way to do this (called PCF) using SampleCmp with a COMPARISON sampler type. This samples a 2x2 stamp, compares each value to a specified value (pass in the second-phase calculated depth here, and don't forget to add some epsilon value (e.g. 1e-5)), and returns the averaged result. Do 2x2 stamps to cover the entire area of the first-phase depth buffer associated with this pixel, and average the results. The final result represents how much of the current line's spine corresponds to the foremost depth of the pre-pass. Because of the PCF's smooth filtering behavior, as lines become visible, they will slowly fade in, as opposed to the aliased "dotted" line effect described in the paper.

Writing texture data onto depth buffer

I'm trying to implement the technique described at : Compositing Images with Depth.
The idea is to use an existing texture (loaded from an image) as a depth mask, to basically fake 3D.
The problem I face is that glDrawPixels is not available in OpenglES. Is there a way to accomplish the same thing on the iPhone?
The depth buffer is more obscured than you think in OpenGL ES; not only is glDrawPixels absent but gl_FragDepth has been removed from GLSL. So you can't write a custom fragment shader to spool values to the depth buffer as you might push colours.
The most obvious solution is to pack your depth information into a texture and to use a custom fragment shader that does a depth comparison between the fragment it generates and one looked up from a texture you supply. Only if the generated fragment is closer is it allowed to proceed. The normal depth buffer will catch other cases of occlusion and — in principle — you could use a framebuffer object to create the depth texture in the first place, giving you a complete on-GPU round trip, though it isn't directly relevant to your problem.
Disadvantages are that drawing will cost you an extra texture unit and textures use integer components.
EDIT: for the purposes of keeping the example simple, suppose you were packing all of your depth information into the red channel of a texture. That'd give you a really low precision depth buffer, but just to keep things clear, you could write a quick fragment shader like:
void main()
{
// write a value to the depth map
gl_FragColor = vec4(gl_FragCoord.w, 0.0, 0.0, 1.0);
}
To store depth in the red channel. So you've partially recreated the old depth texture extension — you'll have an image that has a brighter red in pixels that are closer, a darker red in pixels that are further away. I think that in your question, you'd actually load this image from disk.
To then use the texture in a future fragment shader, you'd do something like:
uniform sampler2D depthMap;
void main()
{
// read a value from the depth map
lowp vec3 colourFromDepthMap = texture2D(depthMap, gl_FragCoord.xy);
// discard the current fragment if it is less close than the stored value
if(colourFromDepthMap.r > gl_FragCoord.w) discard;
... set gl_FragColor appropriately otherwise ...
}
EDIT2: you can see a much smarter mapping from depth to an RGBA value here. To tie in directly to that document, OES_depth_texture definitely isn't supported on the iPad or on the third generation iPhone. I've not run a complete test elsewhere.

Resources