Meaning of "False Positives Per Window" - machine-learning

In the paper Histograms of Oriented Gradients for Human Detection (Navneet Dalal and Bill Triggs) (see link below), to visualize their results, they use a ROC curve, on which the Y axis is TP and the X axis is FPPW (False Positives Per Window).
What is the meaning of this phrase FFPW?
I thought about 3 possible options... I don't know - maybe all of them are wrong. Your help will be appreciated:
Maybe it is the rate of incorrectly classified negative samples, which is: (NUMBER_OF_FALSE_POSITIVES / NUMBER_OF_NEGATIVE_SAMPLES)
Or maybe it is the rate of false alarms per true alarms, which is: (NUMBER_OF_FALSE_POSITIVES / NUMBER_OF_TRUE_POSITIVES)
Or maybe it is the rate of false alarms per true windows in the whle image,
which is: (NUMBER_OF_FALSE_POSITIVES / NUMBER_OF_TRUE_SAMPLES)
I'll be glad to know whether one of them is the correct one, or if you know any other correct definition.
Link to the paper:
(https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf)

It appears to be defined as NUMBER_OF_FALSE_POSITIVES / NUMBER_OF_WINDOWS, where the detection window is a 64x128 moving window. Notice in the last paragraph of section 4 it states:
... In a multiscale detector it corresponds to a raw error rate of about 0.8 false positives per 640×480 image tested.

I had the same confusion. The authors state that they are using DET curves. When you look at several examples about DET curves you see that x-axis is actually False Positive Rate. That means FPPW is FALSE_POSITIVE_RATE.
Hence FPPW = NUMBER_OF_FALSE_POSITIVES / NUMBER_OF_NEGATIVE_SAMPLES

They have a window which they move across the image and evaluate if it shows a human or not.
FPPW is a measure of how often they detect something else as a human within their detector window. It describes the quality of their classification in a way that is independent from image sizes or people counts on a particular image.
So basically they count how often their dumb computer says "yes that's a human", when they show it some rock or icecream.

Related

Improving an algorithm for detecting fish in a canal

I have many hours of video captured by an infrared camera placed by marine biologists in a canal. Their research goal is to count herring that swim past the camera. It is too time consuming to watch each video, so they'd like to employ some computer vision to help them filter out the frames that do not contain fish. They can tolerate some false positives and false negatives, and we do not have sufficient tagged training data yet, so we cannot use a more sophisticated machine learning approach at this point.
I am using a process that looks like this for each frame:
Load the frame from the video
Apply a Gaussian (or median blur)
Subtract the background using the BackgroundSubtractorMOG2 class
Apply a brightness threshold — the fish tend to reflect the sunlight, or an infrared light that is turned on at night — and dilate
Compute the total area of all of the contours in the image
If this area is greater than a certain percentage of the frame, the frame may contain fish. Extract the frame.
To find optimal parameters for these operations, such as the blur algorithm and its kernel size, the brightness threshold, etc., I've taken a manually tagged video and run many versions of the detector algorithm using an evolutionary algorithm to guide me to optimal parameters.
However, even the best parameter set I can find still creates many false negatives (about 2/3rds of the fish are not detected) and false positives (about 80% of the detected frames in fact contain no fish).
I'm looking for ways that I might be able to improve the algorithm. I don't know specifically what direction to look in, but here are two ideas:
Can I identify the fish by the ellipse of their contour and the angle (they tend to be horizontal, or at an upward or downward angle, but not vertical or head-on)?
Should I do something to normalize the lighting conditions so that the same brightness threshold works whether day or night?
(I'm a novice when it comes to OpenCV, so examples are very appreciated.)
i think you're in the correct direction. Your camera is fixed so it will be easy to extract the fish image.
But you're lacking a good tool to accelerate the process. believe me, coding will cost you a lot of time.
Personally, in the past i choose few data first. Then i use bgslibrary to check which background subtraction method work for my data first. Then i code the program by hand again to run for the entire data. The GUI is very easy to use and the library is awesome.
GUI video
Hope this will help you.

DONUT- Anomaly detection Algorithm ignores the relationship between sliding windows?

I'm trying to understand the paper : https://netman.aiops.org/wp-content/uploads/2018/05/PID5338621.pdf about Robust and Rapid Clustering of KPIs for Large-Scale Anomaly Detection.
Clustering is done using ROCKA algorithm.
Steps:
1.) Preprocessing is conducted on the raw KPI data to remove amplitude differences and standardize data.
2.) In baseline extraction step, we reduce noises, remove the extreme values (which are likely anomalies), and extract underlying shapes, referred to as baselines, of KPIs. It's done by applying moving average with a small sliding window.
3.) Clustering is then conducted on the baselines of sampled KPIs, with robustness against phase shifts and noises.
4.) Finally, we calculate the centroid of each cluster, then assign the unlabeled KPIs by their distances to these centroids.
I understand ROCKA mechanism.
Now, i'm trying to understand DONUT algorithm which is applied for "Anomaly Detection".
How it works is :
DONUT applies sliding windows over the KPI to get short series x and tries to recognize what normal patterns x follows. The indicator is then calculated by the difference between reconstructed normal patterns and x to show the severity of anomalies. In practice, a threshold should be selected for each KPI. A data point with an indicator value larger than the threshold is regarded as an anomaly.
Now my question is :
IT seems like DONUT is not robust enough against time information related anomalies. Meaning that it works on a set of sliding windows and it ignores the relationship between windows. So the window becomes a very critical parameter here. So it might generate high false positives. What I'm understanding wrong here?
Please help and make me understand how DONUT will capture the relationship between sliding windows.

Train cascade classifier

I got some questions about the training of a cascade classifier:
On Some of my pictures half of the object is visible. Should I mark the visible part as region of interest, use the picture as negative sample or sort it out completely?
Is the classifier able to detect objects that are just partly visible (using Haar features)?
What should be the ratio of negative and positive samples? Often I read that you should use more negative samples. But for example in this thread it is mentioned that the ratio should be 2:1 (more positive samples).
My current classifier detects to much false positives. According to this tutorial you can either increase the number of stages or decrease the false alarm rate per stage. But I can't increase the number of stages without increasing the false alarm rate. If I just increase the number of stages, the training stops at some point because the classifier runs out of samples. Is the only way to reduce the false positives to increase the number of samples?
Would be glad if someone could answer one of my questions :)
In case of cascade classifier I would suggest to throw away the "half" objects. Since are they positive samples? no since they don't contain the object entirely, are they negative samples? no , because they are not something which have nothing to do with our object.
In my experience I started with training with almost similar number of negative and positive images, and I had the similar problem. Increasing the number of samples was the first step. You should probably increase the number of negative samples, note that you need to get different images, simply having 100 similar background images are almost the same as having only like 5-10 images. In my case the best ratio was positive:negative = 2:1. You still need to try out though it depends on the classifier you are trying to build. If your object is not something too fancy and comes in simple shapes and sizes (like a company logo or coin, or an orange) you don't have to get too many samples but if you are trying to build a classifier which checks for some complicated objects ( like a chair, yes.. chair is a serious object, since it comes in many different shapes and sizes) than you will need a lot of samples.
Hope this helps.

What FFT descriptors should be used as feature to implement classification or clustering algorithm?

I have some geographical trajectories sampled to analyze, and I calculated the histogram of data in spatial and temporal dimension, which yielded a time domain based feature for each spatial element. I want to perform a discrete FFT to transform the time domain based feature into frequency domain based feature (which I think maybe more robust), and then do some classification or clustering algorithms.
But I'm not sure using what descriptor as frequency domain based feature, since there are amplitude spectrum, power spectrum and phase spectrum of a signal and I've read some references but still got confused about the significance. And what distance (similarity) function should be used as measurement when performing learning algorithms on frequency domain based feature vector(Euclidean distance? Cosine distance? Gaussian function? Chi-kernel or something else?)
Hope someone give me a clue or some material that I can refer to, thanks~
Edit
Thanks to #DrKoch, I chose a spatial element with the largest L-1 norm and plotted its log power spectrum in python and it did show some prominent peaks, below is my code and the figure
import numpy as np
import matplotlib.pyplot as plt
sp = np.fft.fft(signal)
freq = np.fft.fftfreq(signal.shape[-1], d = 1.) # time sloth of histogram is 1 hour
plt.plot(freq, np.log10(np.abs(sp) ** 2))
plt.show()
And I have several trivial questions to ask to make sure I totally understand your suggestion:
In your second suggestion, you said "ignore all these values."
Do you mean the horizontal line represent the threshold and all values below it should be assigned to value zero?
"you may search for the two, three largest peaks and use their location and probably widths as 'Features' for further classification."
I'm a little bit confused about the meaning of "location" and "width", does "location" refer to the log value of power spectrum (y-axis) and "width" refer to the frequency (x-axis)? If so, how to combine them together as a feature vector and compare two feature vector of "a similar frequency and a similar widths" ?
Edit
I replaced np.fft.fft with np.fft.rfft to calculate the positive part and plot both power spectrum and log power spectrum.
code:
f, axarr = plt.subplot(2, sharex = True)
axarr[0].plot(freq, np.abs(sp) ** 2)
axarr[1].plot(freq, np.log10(np.abs(sp) ** 2))
plt.show()
figure:
Please correct me if I'm wrong:
I think I should keep the last four peaks in first figure with power = np.abs(sp) ** 2 and power[power < threshold] = 0 because the log power spectrum reduces the difference among each component. And then use the log spectrum of new power as feature vector to feed classifiers.
I also see some reference suggest applying a window function (e.g. Hamming window) before doing fft to avoid spectral leakage. My raw data is sampled every 5 ~ 15 seconds and I've applied a histogram on sampling time, is that method equivalent to apply a window function or I still need apply it on the histogram data?
Generally you should extract just a small number of "Features" out of the complete FFT spectrum.
First: Use the log power spec.
Complex numbers and Phase are useless in these circumstances, because they depend on where you start/stop your data acquisiton (among many other things)
Second: you will see a "Noise Level" e.g. most values are below a certain threshold, ignore all these values.
Third: If you are lucky, e.g. your data has some harmonic content (cycles, repetitions) you will see a few prominent Peaks.
If there are clear peaks, it is even easier to detect the noise: Everything between the peaks should be considered noise.
Now you may search for the two, three largest peaks and use their location and probably widths as "Features" for further classification.
Location is the x-value of the peak i.e. the 'frequency'. It says something how "fast" your cycles are in the input data.
If your cycles don't have constant frequency during the measuring intervall (or you use a window before caclculating the FFT), the peak will be broader than one bin. So this widths of the peak says something about the 'stability' of your cycles.
Based on this: Two patterns are similar if the biggest peaks of both hava a similar frequency and a similar widths, and so on.
EDIT
Very intersiting to see a logarithmic power spectrum of one of your examples.
Now its clear that your input contains a single harmonic (periodic, oscillating) component with a frequency (repetition rate, cycle-duration) of about f0=0.04.
(This is relative frquency, proprtional to the your sampling frequency, the inverse of the time beetween individual measurment points)
Its is not a pute sine-wave, but some "interesting" waveform. Such waveforms produce peaks at 1*f0, 2*f0, 3*f0 and so on.
(So using an FFT for further analysis turns out to be very good idea)
At this point you should produce spectra of several measurements and see what makes a similar measurement and how differ different measurements. What are the "important" features to distinguish your mesurements? Thinks to look out for:
Absolute amplitude: Height of the prominent (leftmost, highest) peaks.
Pitch (Main cycle rate, speed of changes): this is position of first peak, distance between consecutive peaks.
Exact Waveform: Relative amplitude of the first few peaks.
If your most important feature is absoulute amplitude, you're better off with calculating the RMS (root mean square) level of our input signal.
If pitch is important, you're better off with calculationg the ACF (auto-correlation function) of your input signal.
Don't focus on the leftmost peaks, these come from the high frequency components in your input and tend to vary as much as the noise floor.
Windows
For a high quality analyis it is importnat to apply a window to the input data before applying the FFT. This reduces the infulens of the "jump" between the end of your input vector ant the beginning of your input vector, because the FFT considers the input as a single cycle.
There are several popular windows which mark different choices of an unavoidable trade-off: Precision of a single peak vs. level of sidelobes:
You chose a "rectangular window" (equivalent to no window at all, just start/stop your measurement). This gives excellent precission of your peaks which now have a width of just one sample. Your sidelobes (the small peaks left and right of your main peaks) are at -21dB, very tolerable given your input data. In your case this is an excellent choice.
A Hanning window is a single cosine wave. It makes your peaks slightly broader but reduces side-lobe levels.
The Hammimg-Window (cosine-wave, slightly raised above 0.0) produces even broader peaks, but supresses side-lobes by -42 dB. This is a good choice if you expect further weak (but important) components between your main peaks or generally if you have complicated signals like speech, music and so on.
Edit: Scaling
Correct scaling of a spectrum is a complicated thing, because the values of the FFT lines depend on may things like sampling rate, lenght of FFT, window, and even implementation details of the FFT algorithm (there exist several different accepted conventions).
After all, the FFT should show the underlying conservation of energy. The RMS of the input signal should be the same as the RMS (Energy) of the spectrum.
On the other hand: if used for classification it is enough to maintain relative amplitudes. As long as the paramaters mentioned above do not change, the result can be used for classification without further scaling.

Ideal Input In Neural Network For The Game Checkers

I'm designing a feed forward neural network learning how to play the game checkers.
For the input, the board has to be given and the output should give the probability of winning versus losing. But what is the ideal transformation of the checkers board to a row of numbers for input? There are 32 possible squares and 5 different possibilities (king or piece of white or black player and free position) on each square. If I provide an input unit for each possible value for each square, it will be 32 * 5. Another option is that:
Free Position: 0 0
Piece of white: 0 0.5 && King Piece of white: 0 1
Piece of black: 0.5 1 && King Piece of black: 1 0
In this case, the input length will be just 64, but I'm not sure which one will give a better result. Could anyone give any insight on this?
In case anyone is still interested in this topic—I suggest encoding the Checkers board with a 32 dimensional vector. I recently trained a CNN on an expert Checkers database and was able to acheive a suprisingly high level of play with no search, somewhat similar (I suspect) to the supervised learning step that Deepmind used to pretrain AlphaGo. I represented my input as an 8x4 grid, with entries in the set [-3, -1, 0, 1, 3] corresponding to an opposing king, opposing checker, empty, own checker, own king, repsectively. Thus, rather than encoding the board with a 160 dimensional vector where each dimension corresponds to a location-piece combination, the input space can be reduced to a 32-dimensional vector where each board location is represented by a unique dimension, and the piece at that location is encoded by a set of real numbers—this is done without any loss of information.
The more interesting question, at least in my mind, is which output encoding is most conducive for learning. One option is to encode it in the same way as the input. I would advise against this having found that simplifying the output encoding to a location (of the piece to move) and a direction (along which to move said piece) is much more advantageous for learning. While the reasons for this are likely more subtle, I suspect it is due to the enormous state space of checkers (something like 50^20 board possitions). Considering that the goal of our predictive model is to accept an input containing an enourmous number of possible states, and produce one ouput (i.e., move) from (at-most) 48 possibilities (12 pieces times 4 possible directions excluding jumps), a top priority in architecting a neural network should be matching the complexity of its input and output space to that of the actual game. With this in mind, I chose to encode the ouput as a 32 x 4 matrix, with each row representing a board location, and each column representing a direction. During training I simply unraveled this into a 128 dimensional, one-hot encoded vector (using argmax of softmax activations). Note that this output encoding lends itself to many invalid moves for a given board (e.g., moves off the board from edges and corners, moves to occupied locations, etc..)—we hope that the neural network can learn valid play given a large enough training set. I found that the CNN did a remarkable job at learning valid moves.
I’ve written more about this project at http://www.chrislarson.io/checkers-p1.
I've done this sort of thing with Tic-Tac-Toe. There are several ways to represent this. One of the most common for TTT is have input and output that represent the entire size of the board. In TTT this becomes 9 x hidden x 9. Input of -1 for X, 0 for none, 1 for O. Then the input to the neural network is the current state of the board. The output is the desired move. Whatever output neuron has the highest activation is going to be the move.
Propagation training will not work too well here because you will not have a finite training set. Something like Simulated Annealing, PSO, or anything with a score function would be ideal. Pitting the networks against each other for the scoring function would be great.
This worked somewhat well for TTT. I am not sure how it would work for Checkers. Chess would likely destroy it. For Go it would likely be useless.
The problem is that the neural network will learn patters only at fixed location. For example jumping an opponent in the top-left corner would be a totally different situation than jumping someone in the bottom left corner. These would have to be learned separately.
Perhaps better is to represent the exact state of the board in position independent way. This would require some thought. For instance you might communicate what "jump" opportunities exist. What move-towards king square opportunity's exist, etc and allow the net to learn to prioritize these.
I've tried all possibilities and intuitive i can say that the most great idea is separating all possibilities for all squares. Thus, concrete:
0 0 0: free
1 0 0: white piece
0 0 1: black piece
1 1 0: white king
0 1 1: black king
It is also possible to enhance other parameters about the situation of the game like the amount of pieces under threat or amount of possibilities to jump.
Please see this thesis
Blondie24 page 46, there is description of input for neural network.

Resources