Modeling a sports tournament in Cypher using neo4j - neo4j

I created a simple csv that has some boxing matches. I'm trying to figure out how to model this in Neo4j.
The csv looks like this:
My interest in practicing using this small dataset in Neo4j was because it seems like Neo4j would be a good way to easily query who fought who, and who had common opponents, or whatever.
My first thought was that naturally, each boxer should be represented in a 'boxer' node, and each fight should be represented in a 'fight' node.
After modeling it as such, I realized, that there isn't actually one node for each boxer, because over time, the boxer's age changes. So I realized that each boxer would have to have a separate node for each fight. For example, Glass Joe has 2 fights and thus he appears twice, once when he was 23 and once next year when he battled Sandman and he was 24:
But this kinda defeats the purpose. Now, my graph will be made up of disconnected sets of 3 nodes, one for each fight in the csv. So what's the purpose?
My question is, how can I model such a simple yet complex situation like this: some type of tournament or game that changes over time, and the properties of the competitors' nodes change -- yet we want the graph to be connected:
(oops: Sandman should now be 51)
But then again, I don't think the above image is correct -- the edges shown are actually properties of the boxer node. If they are properties of the boxer...then they don't belong on the edge, right?
Here is my code so far (and the csv lives here):
LOAD CSV WITH HEADERS FROM
'file:///<grab it from dropbox please!>' AS line
CREATE (b:boxer {boxer_id: line.boxer_id, name: line.name})
SET b.age = TOINT(age);
LOAD CSV WITH HEADERS FROM
'file:///<grab it from dropbox please!>' AS line
MERGE(f:fight {fight_id: line.fight_id});
I end up with these nodes:
...but not sure how to connect them. Any advice or recommendations would be greatly appreciated.

Your first instinct was right. Ideally if you had the boxer's birthday that's what you would store. That would also help you tell apart boxers who have the same name/nickname. Your idea of storing the boxer's age as part of the relationship is a good idea, though.
If you really wanted to store each node for each boxer for each row you could do the following:
(:BoxerRecord)-[:FOUGHT_IN]->(:Fight)
(:BoxerRecord)-[:REPRESENTS]->(:Boxer)
So basically you use the CREATE clause to create each BoxerRecord and MERGE for each Boxer record so that they get merged together.
Then if you wanted to find all of the boxers that two people have fought in common (I'm making up an :
MATCH
(b1:Boxer {boxer_id: 100),
(b2:Boxer {boxer_id: 101})
(b1)<-[:REPRESENTS]-(:BoxerRecord)-[:FOUGHT_IN]->(:Fight)<-[:FOUGHT_IN]-(:BoxerRecord)-[:REPRESENTS]->(common_boxer:Boxer)<-[:REPRESENTS]-(:BoxerRecord)-[:FOUGHT_IN]->(:Fight)<-[:FOUGHT_IN]-(:BoxerRecord)-[:REPRESENTS]->(b2)
RETURN common_boxer, count(*)

Related

How do I refactor data two neo4j nodes to a relationship?

I'm doing an experiment with using a graph database (neo4j). I have two csv's that I imported into a neo4j datastore. I'm a little shakey on the neo terminology; so forgive me. Lets say I have:
Customer (AccountNumber, CustomerName) and
CustomerGroups (AccountNumber, GroupName).
I would like to create a new Node called groups which is comprised of the distinct GroupName from CustomerGroups. I'll call it Group.
I then want to create relationships "HAS_GROUP" from Customer to Group using the common AccountNumber from CustomerGroups.
Once the above is completed, I could delete CustomerGroups as its no longer needed.
I'm just stuck at the syntax. I can get the distinct groups from CustomerGroups with:
MATCH (n:CustomerGroups) distinct n.GROUP_NAME
and I get back about 50 distinct groups, but can't figure how to add the create statement to the results and CREATE g:Group {GroupName: n.GROUP_NAME}
I then know my followup question is how to do the MATCH to the new group using the old table with common account numbers.
FYI: I've indexed the AccountNumber in both Nodes. Both Customer and CustomerGroups have over 5 Million nodes. Not bad for a laptop (2 min to import using neo4j-import). I was impressed!
Thanks for any help you can give!
Instead of creating a CustomerGroups label and creating nodes for that, you should be able to define relationships that you would like to create in your neo4j-import. It would certainly be a lot faster too. See:
http://neo4j.com/docs/stable/import-tool-header-format.html
To your question, you could probably do something like:
MATCH (cg:CustomerGroup)
MATCH (customer:Customer {AccountNumber: cg. AccountNumber}), (group:Group {GroupName: cg.GroupName})
CREATE (customer)-[:IN_GROUP]->(group)
You'd definitely want to make sure you have indexes on :Customer(AccountNumber) and :Group(GroupName) first. But even then it would still be much slower than doing it as part of your initial import.
Also, you may or may not want MERGE instead of CREATE

One Node to Gather Them All

Say I am managing collectibles. I have thousands of baseball trading cards, thousands still of gaming cards (think Magic: the Gathering), and then thousands and thousands of doilies.
The part of me that's been steeped in relational databases for 20+ years is uncomfortable with the idea of thousands of Neo4J nodes floating out in space.
So I am inclined to gather them all with a node such as (:BASEBALL_CARDS), (:MTG_CARDS), and of course (:DOILIES). The idea is that these are singletons.
Now if I want all baseball cards that perhaps refer to a certain player, I could do something like:
(:BASEBALL_CARDS)-[GATHERS]->(:BASEBALL_CARD)-[:FEATURES]->(p:PLAYER {name: '...'})
It's very comforting to have the :BASEBALL_CARDS singleton, but does it do anything more than could be accomplished by indexing :BASEBALL_CARD?
(:BASEBALL_CARD)-[:FEATURES]->(p:PLAYER {name: '...'})
Is it best-practice to have thousands of free-ranging nodes?
One exceptional strong point of the graph database is the local query: the relationship lives in the instance, not in the type. A particular challenge (apart from modelling well) is determining the starting point of the local query (and keeping it local, i.e., avoiding path explosions). In Neo4j 1.x your One Node was a way to achieve a starting point for a certain kind of query. With 2.x and the introduction of labels, indexing :BaseballCard is the standard way to accomplish the same. If the purpose of that One Node is as a starting point for the kind of query in your example, then you are better off using a label index. A common problem in 1.x was that a node with an increasing number of relationships of the same type and direction eventually becomes a bottle neck for traversals. People started partitioning your One Node into A Paged Handful of Nodes, something like
(:BaseballCards)-[:GATHERS]->(:BaseballCards1to10000)-[:GATHERS]->(:BaseballCard)
The purpose of finding a starting point for the local query is often better served by labels, perhaps in combination with a basic, ordinary, local traversal, than by A Handful of Nodes. Then again, if it calms your nerves or satisfies your sense of the epic to have such a node, by all means have it. Because of the locality of queries, it will do you no harm.
In your example, however, neither the One Node nor an index on :BaseballCard would best serve as the starting point of the local query. The most particular pattern of interest is instead the name of the player. If you index (:Player) on name you will get the best starting point. The traversal across the one or handful* of [:FEATURES] relationships is very cheap and with a simple test on the other end for the :BaseballCard label, you are done. You could of course maintain the One Node for all players that share a name...
In my most humble opinion there is little need for discomfort. I do, however, want to affirm and commend your unease, in this one regard: that the graph is most powerful for connected data. The particular connection gathering the baseball cards doesn't seem to add new understanding or improve performance, but wherever there is disconnected data there is the potential for discovering exciting and meaningful patterns. Perhaps in the future the cards will be connected through patterns that signify their range of value, or the quality of their lamination, or a linked list of previous owners, or how well they work as conversations starters on a date. The absence of relationships is a call to find that One Missing Link that brings tremendous insight and value into your data.
* Handful, assuming that more than one baseball card features the same player, or some baseball players are also featured on cards of Magic: The Gathering. I'm illiterate in both domains, so I want to at least allow for the possibility.
It is ironic that you are concerned about nodes "floating out in space", when the whole idea behind graph DBs is making the connections between nodes a first class DB construct.
But I think your actual concern is that nodes do not "belong to a table" (in relational DB parlance). So, you would feel more comfortable in creating a special singleton node that in some sense takes the place of a table, from which you can access all the nodes that ought belong to that table.
A node label can be seen as the equivalent of a "table name". So, not only is there no need for you to also create a singleton "table node", doing so would be wasteful in DB resources, and complicate and slow down your queries. And neo4j can quickly access all the nodes with the same label.

Neo4j data modeling for branching/merging graphs

We are working on a system where users can define their own nodes and connections, and can query them with arbitrary queries. A user can create a "branch" much like in SCM systems and later can merge back changes into the main graph.
Is it possible to create an efficient data model for that in Neo4j? What would be the best approach? Of course we don't want to duplicate all the graph data for every branch as we have several million nodes in the DB.
I have read Ian Robinson's excellent article on Time-Based Versioned Graphs and Tom Zeppenfeldt's alternative approach with Network versioning using relationnodes but unfortunately they are solving a different problem.
I Would love to know what you guys think, any thoughts appreciated.
I'm not sure what your experience level is. Any insight into that would be helpful.
It would be my guess that this system would rely heavily on tags on the nodes. maybe come up with 5-20 node types that are very broad, including the names and a few key properties. Then you could allow the users to select from those base categories and create their own spin-offs by adding tags.
Say you had your basic categories of (:Thing{Name:"",Place:""}) and (:Object{Category:"",Count:4})
Your users would have a drop-down or something with "Thing" and "Object". They'd select "Thing" for instance, and type a new label (Say "Cool"), values for "Name" and "Place", and add any custom properties (IsAwesome:True).
So now you've got a new node (:Thing:Cool{Name:"Rock",Place:"Here",IsAwesome:True}) Which allows you to query by broad categories or a users created categories. Hopefully this would keep each broad category to a proportional fraction of your overall node count.
Not sure if this is exactly what you're asking for. Good luck!
Hmm. While this isn't insane, think about the type of system you're replacing first. SQL. In SQL databases you wouldn't use branches because it's data storage. If you're trying to get data from multiple sources into one DB, I'd suggest exporting them all to CSV files and using a MERGE statement in cypher to bring them all into your DB at once.
This could manifest similar to branching by having each person run a script on their own copy of the DB when you merge that takes all the nodes and edges in their copy and puts them all into a CSV. IE
MATCH (n)-[:e]-(n2)
RETURN n,e,n2
Then comparing these CSV's as you pull them into your final DB to see what's already there from the other copies.
IMPORT CSV WITH HEADERS FROM "file:\\YourFile.CSV" AS file
MERGE (N:Node{Property1:file.Property1, Property2:file.Property2})
MERGE (N2:Node{Property1:file.Property1, Property2:file.Property2})
MERGE (N)-[E:Edge]-(N2)
This will work, as long as you're using node types that you already know about and each person isn't creating new data structures that you don't know about until the merge.

Creating nodes and relationships at the same time in neo4j

I am trying to build an database in Neo4j with a structure that contains seven different types of nodes, in total around 4-5000 nodes and between them around 40000 relationships. The cypher code i am currently using is that i first create the nodes with the code:
Create (node1:type {name:'example1', type:'example2'})
Around 4000 of that example with unique nodes.
Then I've got relationships stated as such:
Create
(node1)-[:r]-(node51),
(node2)-[:r]-(node5),
(node3)-[:r]-(node2);
Around 40000 of such unique relationships.
With smaller scale graphs this has not been any problem at all. But with this one, the Executing query never stops loading.
Any suggestions on how I can make this type of query work? Or what i should do instead?
edit. What I'm trying to build is a big graph over a product, with it's releases, release versions, features etc. in the same way as the Movie graph example is built.
The product has about 6 releases in total, each release has around 20 releaseversion. In total there is 371 features and of there 371 features there is also 438 featureversions. ever releaseversion (120 in total) then has around 2-300 featureversions each. These Featureversions are mapped to its Feature whom has dependencies towards a little bit of everything in the db. I have also involed HW dependencies such as the possible hw to run these Features on, releases on etc. so basicaly im using cypher code such as:
Create (Product1:Product {name:'ABC', type:'Product'})
Create (Release1:Release {name:'12A', type:'Release'})
Create (Release2:Release {name:'13A, type:'release'})
Create (ReleaseVersion1:ReleaseVersion {name:'12.0.1, type:'ReleaseVersion'})
Create (ReleaseVersion2:ReleaseVersion {name:'12.0.2, type:'ReleaseVersion'})
and below those i've structured them up using
Create (Product1)<-[:Is_Version_Of]-(Release1),
(Product1)<-[:Is_Version_Of]-(Release2),
(Release2)<-[:Is_Version_Of]-(ReleaseVersion21),
All the way down to features, and then I've also added dependencies between them such as:
(Feature1)-[:Requires]->(Feature239),
(Feature239)-[:Requires]->(Feature51);
Since i had to find all this information from many different excel-sheets etc, i made the code this way thinking i could just put it together in one mass cypher query and run it on the /browser on the localhost. it worked really good as long as i did not use more than 4-5000 queries at a time. Then it created the entire database in about 5-10 seconds at maximum, but now when I'm trying to run around 45000 queries at the same time it has been running for almost 24 hours, and are still loading and saying "executing query...". I wonder if there is anyway i can improve the time it takes, will the database eventually be created? or can i do some smarter indexes or other things to improve the performance? because by the way my cypher is written now i cannot divide it into pieces since everything in the database has some sort of connection to the product. Do i need to rewrite the code or is there any smooth way around?
You can create multiple nodes and relationships interlinked with a single create statement, like this:
create (a { name: "foo" })-[:HELLO]->(b {name : "bar"}),
(c {name: "Baz"})-[:GOODBYE]->(d {name:"Quux"});
So that's one approach, rather than creating each node individually with a single statement, then each relationship with a single statement.
You can also create multiple relationships from objects by matching first, then creating:
match (a {name: "foo"}), (d {name:"Quux"}) create (a)-[:BLAH]->(d);
Of course you could have multiple match clauses, and multiple create clauses there.
You might try to match a given type of node, and then create all necessary relationships from that type of node. You have enough relationships that this is going to take many queries. Make sure you've indexed the property you're using to match the nodes. As your DB gets big, that's going to be important to permit fast lookup of things you're trying to create new relationships off of.
You haven't specified which query you're running that isn't "stopping loading". Update your question with specifics, and let us know what you've tried, and maybe it's possible to help.
If you have one of the nodes already created then a simple approach would be:
MATCH (n: user {uid: "1"}) CREATE (n) -[r: posted]-> (p: post {pid: "42", title: "Good Night", msg: "Have a nice and peaceful sleep.", author: n.uid});
Here the user node already exists and you have created a new relation and a new post node.
Another interesting approach might be to generate your statements directly in Excel, see http://blog.bruggen.com/2013/05/reloading-my-beergraph-using-in-graph.html?view=sidebar for an example. You can run a lot of CREATE statements in one transaction, so this should not be overly complicated.
If you're able to use the Neo4j 2.1 prerelease milestones, then you should try using the new LOAD CSV and PERIODIC COMMIT features. They are designed for just this kind of use case.
LOAD CSV allows you to describe the structure of your data with one or more Cypher patterns, while providing the values in CSV to avoid duplication.
PERIODIC COMMIT can help make large imports more reliable and also improve performance by reducing the amount of memory that is needed.
It is possible to use a single cypher query to create a new node as well as relate it to an existing now.
As an example, assume you're starting with:
an existing "One" node which has an "id" property "1"
And your goal is to:
create a second node, let's call that "Two", and it should have a property id:"2"
relate the two nodes together
You could achieve that goal using a single Cypher query like this:
MATCH (one:One {id:'1'})
CREATE (one) -[:RELATED_TO]-> (two:Two {id:'2'})

Why do relationships as a concept exist in neo4j or graph databases in general?

I can't seem to find any discussion on this. I had been imagining a database that was schemaless and node based and heirarchical, and one day I decided it was too common sense to not exist, so I started searching around and neo4j is about 95% of what I imagined.
What I didn't imagine was the concept of relationships. I don't understand why they are necessary. They seem to add a ton of complexity to all topics centered around graph databases, but I don't quite understand what the benefit is. Relationships seem to be almost exactly like nodes, except more limited.
To explain what I'm thinking, I was imagining starting a company, so I create myself as my first nodes:
create (u:User { u.name:"mindreader"});
create (c:Company { c.name:"mindreader Corp"});
One day I get a customer, so I put his company into my db.
create (c:Company { c.name:"Customer Company"});
create (u:User { u.name:"Customer Employee1" });
create (u:User { u.name:"Customer Employee2"});
I decide to link users to their customers
match (u:User) where u.name =~ "Customer.*"
match (c:Company) where c.name =~ "Customer.*
create (u)-[:Employee]->(c);
match (u:User where name = "mindreader"
match (c:Company) where name =~ "mindreader.*"
create (u)-[:Employee]->(c);
Then I hire some people:
match (c:Company) where c.name =~ "mindreader.*"
create (u:User { name:"Employee1"})-[:Employee]->(c)
create (u:User { name:"Employee2"})-[:Employee]->(c);
One day hr says they need to know when I hired employees. Okay:
match (c:Company)<-[r:Employee]-(u:User)
where name =~ "mindreader.*" and u.name =~ "Employee.*"
set r.hiredate = '2013-01-01';
Then hr comes back and says hey, we need to know which person in the company recruited a new employee so that they can get a cash reward for it.
Well now what I need is for a relationship to point to a user but that isn't allowed (:Hired_By relationship between :Employee relationship and a User). We could have an extra relationship :Hired_By, but if the :Employee relationship is ever deleted, the hired_by will remain unless someone remembers to delete it.
What I could have done in neo4j was just have a
(u:User)-[:hiring_info]->(hire_info:HiringInfo)-[:hired_by]->(u:User)
In which case the relationships only confer minimal information, the name.
What I originally envisioned was that there would be nodes, and then each property of a node could be a datatype or it could be a pointer to another node. In my case, a user record would end up looking like:
User {
name: "Employee1"
hiring_info: {
hire_date: "2013-01-01"
hired_by: u:User # -> would point to a user
}
}
Essentially it is still a graph. Nodes point to each other. The name of the relationship is just a field in the origin node. To query it you would just go
match (u:User) where ... return u.name, u.hiring_info.hiring_date, u.hiring_info.hired_by.name
If you needed a one to many relationship of the same type, you would just have a collection of pointers to nodes. If you referenced a collection in return, you'd get essentially a join. If you delete hiring_info, it would delete the pointer. References to other nodes would not have to be a disorganized list at the toplevel of a node. Furthermore when I query each user I will know all of the info about a user without both querying for the user itself and also all of its relationships. I would know his name and the fact that he hired someone in the same query. From the database backend, I'm not sure much would change.
I see quite a few questions from people asking whether they should use nodes or relationships to model this or that, and occasionally people asking for a relationship between relationships. It feels like the XML problem where you are wondering if a pieces of information should be its own tag or just a property its parent tag.
The query engine goes to great pains to handle relationships, so there must be some huge advantage to having them, but I can't quite see it.
Different databases are for different things. You seem to be looking for a noSQL database.
This is an extremely wide topic area that you've reached into, so I'll give you the short of it. There's a spectrum of database schemas, each of which have different use cases.
NoSQL aka Non-relational Databases:
Every object is a single document. You can have references to other documents, but any additional traversal means you're making another query. Times when you don't have relationships between your data very often, and are usually just going to want to query once and have a large amount of flexibly-stored data as the document that is returnedNote: These are not "nodes". Node have a very specific definition and implies that there are edges.)
SQL aka Relational Databases:
This is table land, this is where foreign keys and one-to-many relationships come into play. Here you have strict schemas and very fast queries. This is honestly what you should use for your user example. Small amounts of data where the relationships between things are shallow (You don't have to follow a relationship more than 1-2 times to get to the relevant entry) are where these excel.
Graph Database:
Use this when relationships are key to what you're trying to do. The most common example of a graph is something like a social graph where you're connecting different users together and need to follow relationships for many steps. (Figure out if two people are connected within a depth for 4 for instance)
Relationships exist in graph databases because that is the entire concept of a graph database. It doesn't really fit your application, but to be fair you could just keep more in the node part of your database. In general the whole idea of a database is something that lets you query a LOT of data very quickly. Depending on the intrinsic structure of your data there are different ways that that makes sense. Hence the different kinds of databases.
In strongly connected graphs, Neo4j is 1000x faster on 1000x the data than a SQL database. NoSQL would probably never be able to perform in a strongly connected graph scenario.
Take a look at what we're building right now: http://vimeo.com/81206025
Update: In reaction to mindreader's comment, we added the related properties to the picture:
RDBM systems are tabular and put more information in the tables than the relationships. Graph databases put more information in relationships. In the end, you can accomplish much the same goals.
However, putting more information in relationships can make queries smaller and faster.
Here's an example:
Graph databases are also good at storing human-readable knowledge representations, being edge (relationship) centric. RDF takes it one step further were all information is stored as edges rather than nodes. This is ideal for working with predicate logic, propositional calculus, and triples.
Maybe the right answer is an object database.
Objectivity/DB, which now supports a full suite of graph database capabilities, allows you to design complex schema with one-to-one, one-to-many, many-to-one, and many-to-many reference attributes. It has the semantics to view objects as graph nodes and edges. An edge can be just the reference attribute from one node to another or an edge can exist as an edge object that sits between two nodes.
An edge object can have any number of attribute and can have references off to other objects, as shown in the diagram below.
Being able to "hang" complex objects off of an edge allows Objectivity/DB to support weighted queries where the edge-weight can be calculated using a user-defined weight calculator operator. The weight calculator operator can build the weight from a static attribute on the edge or build the weight by digging down through the objects connected to the edge. In the picture, above, we could create a edge-weight calculator that computes the sum of the CallDetail lengths connected to the Call edge.

Resources