Instance vs Loops in HLSL Model 5 Geometry Shaders - directx

I'm looking at getting a program written for DirectX11 to play nice on DirectX10. To do that, I need to compile the shaders for model 4, not 5. Right now the only problem with that is that the geometry shaders use instancing which is unsupported by 4. The general model is
[instance(NUM_INSTANCES)]
void Gs(..., in uint instanceId : SV_GSInstanceID) { }
I can't seem to find many documents on why this exists, because my thought is: can't I just replace this with a loop from instanceId=0 to instanceId=NUM_INSTANCES-1?
The answer seems to be no, as it doesn't seems to output correctly, but besides my exact problem - can you help me understand why the concept of instancing exists. Is there some implication on the entire pipeline that instancing has beyond simply calling the main function twice with a different index?

With regards to why my replacement did not work:
Geometry shaders are annotated with [maxvertexcount(N)]. I had incorrectly assumed this was the vertex input count, and ignored it. In fact, input is determined by the type of primitive coming in, and so this was about the output. Before, if N was my output over I instances, each instance output N vertices. But now that I want to use a loop, a single instance outputs N*I vertices. As such, the answer was to do as I suggested, and also use [maxvertexcount(N*NUM_INSTANCES)].
To more broadly answer my question on why instances may be useful in a world that already has loops, I can only guess
Loops are not truly supported in shaders, it turns out - graphics card cores do not have a concept of control flow. When loops are written in shaders, the loop is unrolled (see [unroll]). This has limitations, makes compilation slower, and makes the shader blob bigger.
Instances can be parallelized - one GPU core can run one instance of a shader while another runs the next instance of the same shader with the same input.

Related

DirectCompute: How to read from a RWTexture2D<float4>?

I have the following buffer:
RWTexture2D<float4> Output : register(u0);
This buffer is used by a compute shader for rendering a computed image.
To write a pixel in that texture, I just use code similar to this:
Output[XY] = SomeFunctionReturningFloat4(SomeArgument);
This works very well and my computed image is correctly rendered on screen.
Now at some stage in the compute shader, I would like to read back an
already computed pixel and process it again.
Output[XY] = SomeOtherFunctionReturningFloat4(Output[XY]);
The compiler return an error:
error X3676: typed UAV loads are only allowed for single-component 32-bit element types
Any help appreciated.
In Compute Shaders, data access is limited on some data types, and not at all intuitive and straightforward. In your case, you use a
RWTexture2D<float4>
That is a UAV typed of DXGI_FORMAT_R32G32B32A32_FLOAT format.
This forma is only supported for UAV typed store, but it’s not supported by UAV typed load.
Basically, you can only write on it, but not read it. UAV typed load only supports 32 bit formats, in your case DXGI_FORMAT_R32_FLOAT, that can only contain a single component (32 bits and that’s all).
Your code should run if you use a RWTexture2D<float> but I suppose this is not enough for you.
Possible workarounds that spring to my minds are:
1. using 4 different RWTexture2D<float>, one for each component
2. using 2 different textures, RWTexture2D<float4> to write your values and Texture2D<float4> to read from
3. Use a RWStructuredBufferinstead of the texture.
I don’t know your code so I don’t know if solutions 1. and 2. could be viable. However, I strongly suggest going for 3. and using StructuredBuffer. A RWStructuredBuffer can hold any type of struct and can easily cover all your needs. To be honest, in compute shaders I almost only use them to pass data. If you need the final output to be a texture, you can do all your calculations on the buffer, then copy the results on the texture when you’re done. I would add that drivers often use CompletePath to access RWTexture2D data, and FastPath to access RWStructuredBuffer data, making the former awfully slower than the latter.
Reference for data type access is here. Scroll down to UAV typed load.

What exactly is a constant buffer (cbuffer) used for in hlsl?

Currently I have this code in my vertex shader class:
cbuffer MatrixBuffer {
matrix worldMatrix;
matrix viewMatrix;
matrix projectionMatrix; };
I don't know why I need to wrap those variables in a cbuffer. If I delete the buffer my code works aswell. I would really appreciate it if someone could give me a brieve explanation why using cbuffers are necessary.
The reason it works either way is due to the legacy way constants were handled in Direct3D 8/Direct3D 9. Back then, there was only a single shared array of constants for the entire shader (one for VS and one for PS). This required that you had to change the constant array every single time you called Draw.
In Direct3D 10, constants were reorganized into one or more Constant Buffers to make it easier to update some constants while leaving others alone, and thus sending less data to the GPU.
See the classic presentation Windows to Reality: Getting the Most out of Direct3D 10 Graphics in Your Games for a lot of details on the impacts of constant update.
The up-shot of which here is that if you don't specify cbuffer, all the constants get put into a single implicit constant buffer bound to register b0 to emulate the old 'one constants array' behavior.
There are compiler flags to control the acceptance of legacy constructs: /Gec for backwards compatibility mode to support old Direct3D 8/9 intrinsics, and /Ges to enable a more strict compilation to weed out older constructs. That said, the HLSL compiler will pretty much always accept global constants without cbuffer and stick them into a single implicit constant buffer because this pattern is extremely common in shader code.

Vulkan texture rendering on multiple meshes

I am in the middle of rendering different textures on multiple meshes of a model, but I do not have much clues about the procedures. Someone suggested for each mesh, create its own descriptor sets and call vkCmdBindDescriptorSets() and vkCmdDrawIndexed() for rendering like this:
// Pipeline with descriptor set layout that matches the shared descriptor sets
vkCmdBindPipeline(...pipelines.mesh...);
...
// Mesh A
vkCmdBindDescriptorSets(...&meshA.descriptorSet... );
vkCmdDrawIndexed(...);
// Mesh B
vkCmdBindDescriptorSets(...&meshB.descriptorSet... );
vkCmdDrawIndexed(...);
However, the above approach is quite different from the chopper sample and vulkan's samples that makes me have no idea where to start the change. I really appreciate any help to guide me to a correct direction.
Cheers
You have a conceptual object which is made of multiple meshes which have different texturing needs. The general ways to deal with this are:
Change descriptor sets between parts of the object. Painful, but it works on all Vulkan-capable hardware.
Employ array textures. Each individual mesh fetches its data from a particular layer in the array texture. Of course, this restricts you to having each sub-mesh use textures of the same size. But it works on all Vulkan-capable hardware (up to 128 array elements, minimum). The array layer for a particular mesh can be provided as a push-constant, or a base instance if that's available.
Note that if you manage to be able to do it by base instance, then you can render the entire object with a multi-draw indirect command. Though it's not clear that a short multi-draw indirect would be faster than just baking a short sequence of drawing commands into a command buffer.
Employ sampler arrays, as Sascha Willems suggests. Presumably, the array index for the sub-mesh is provided as a push-constant or a multi-draw's draw index. The problem is that, regardless of how that array index is provided, it will have to be a dynamically uniform expression. And Vulkan implementations are not required to allow you to index a sampler array with a dynamically uniform expression. The base requirement is just a constant expression.
This limits you to hardware that supports the shaderSampledImageArrayDynamicIndexing feature. So you have to ask for that, and if it's not available, then you've got to work around that with #1 or #2. Or just don't run on that hardware. But the last one means that you can't run on any mobile hardware, since most of them don't support this feature as of yet.
Note that I am not saying you shouldn't use this method. I just want you to be aware that there are costs. There's a lot of hardware out there that can't do this. So you need to plan for that.
The person that suggested the above code fragment was me I guess ;)
This is only one way of doing it. You don't necessarily have to create one descriptor set per mesh or per texture. If your mesh e.g. uses 4 different textures, you could bind all of them at once to different binding points and select them in the shader.
And if you a take a look at NVIDIA's chopper sample, they do it pretty much the same way only with some more abstraction.
The example also sets up descriptor sets for the textures used :
VkDescriptorSet *textureDescriptors = m_renderer->getTextureDescriptorSets();
binds them a few lines later :
VkDescriptorSet sets[3] = { sceneDescriptor, textureDescriptors[0], m_transform_descriptor_set };
vkCmdBindDescriptorSets(m_draw_command[inCommandIndex], VK_PIPELINE_BIND_POINT_GRAPHICS, layout, 0, 3, sets, 0, NULL);
and then renders the mesh with the bound descriptor sets :
vkCmdDrawIndexedIndirect(m_draw_command[inCommandIndex], sceneIndirectBuffer, 0, inCount, sizeof(VkDrawIndexedIndirectCommand));
vkCmdDraw(m_draw_command[inCommandIndex], 1, 1, 0, 0);
If you take a look at initDescriptorSets you can see that they also create separate descriptor sets for the cubemap, the terrain, etc.
The LunarG examples should work similar, though if I'm not mistaken they never use more than one texture?

WebGL one-to-many data processing

Is there any scheme using WebGL which allows to process one data record to an previously unknown number of records?
Using OpenGL for example, a geometry program can be used to multiply vertices depending on their attributes, and thus output data of unknown length.
Is there any trick to use WebGL in a likewise fashion, or is this only possible on the JavaScript side?
Yup, there is no Geometry Shader in WebGL (just Vertex and Fragment).
So, yes, something multiplicative needs to be implemented on the JS side, by making more data or more calls to gl.drawTriangles/gl.drawElements.
One approach that might be applicable, is to have lots of data (triangles, say), and use the Fragment Shader to algorithmicly throw-away some or all of them. Kind of the opposite of multiplying. But if you keep the same triangles, and change their processing with uniforms, or perhaps smaller data in textures, you can at least save the hit of sending up lots of different data.
To "Throw away" a vertex, need to put it outside the NDC (the -1 to +1 unit cube), for all three vertices of a triangle.

DirectX 11, Combining pixel shaders to prevent bottlenecks

I'm trying to implement one complex algorithm using GPU. The only problem is HW limitations and maximum available feature level is 9_3.
Algorithm is basically "stereo matching"-like algorithm for two images. Because of mentioned limitations all calculations has to be performed in Vertex/Pixel shaders only (there is no computation API available). Vertex shaders are rather useless here so I considered them as pass-through vertex shaders.
Let me shortly describe the algorithm:
Take two images and calculate cost volume maps (basically conterting RGB to Grayscale -> translate right image by D and subtract it from the left image). This step is repeated around 20 times for different D which generates Texture3D.
Problem here: I cannot simply create one Pixel Shader which calculates
those 20 repetitions in one go because of size limitation of Pixel
Shader (max. 512 arithmetics), so I'm forced to call Draw() in a loop
in C++ which unnecessary involves CPU while all operations are done on
the same two images - it seems to me like I have one bottleneck here. I know that there are multiple render targets but: there are max. 8 targets (I need 20+), if I want to generate 8 results in one pixel shader I exceed it's size limit (512 arithmetic for my HW).
Then I need to calculate for each of calculated textures box filter with windows where r > 9.
Another problem here: Because window is so big I need to split box filtering into two Pixel Shaders (vertical and horizontal direction separately) because loops unrolling stage results with very long code. Manual implementation of those loops won't help cuz still it would create to big pixel shader. So another bottleneck here - CPU needs to be involved to pass results from temp texture (result of V pass) to the second pass (H pass).
Then in next step some arithmetic operations are applied for each pair of results from 1st step and 2nd step.
I haven't reach yet here with my development so no idea what kind of bottlenecks are waiting for me here.
Then minimal D (value of parameter from 1st step) is taken for each pixel based on pixel value from step 3.
... same as in step 3.
Here basically is VERY simple graph showing my current implementation (excluding steps 3 and 4).
Red dots/circles/whatever are temporary buffers (textures) where partial results are stored and at every red dot CPU is getting involved.
Question 1: Isn't it possible somehow to let GPU know how to perform each branch form up to the bottom without involving CPU and leading to bottleneck? I.e. to program sequence of graphics pipelines in one go and then let the GPU do it's job.
One additional question about render-to-texture thing: Does all textures resides in GPU memory all the time even between Draw() method calls and Pixel/Vertex shaders switching? Or there is any transfer from GPU to CPU happening... Cuz this may be another issue here which leads to bottleneck.
Any help would be appreciated!
Thank you in advance.
Best regards,
Lukasz
Writing computational algorithms in pixel shaders can be very difficult. Writing such algorithms for 9_3 target can be impossible. Too much restrictions. But, well, I think I know how to workaround your problems.
1. Shader repetition
First of all, it is unclear, what do you call "bottleneck" here. Yes, theoretically, draw calls in for loop is a performance loss. But does it bottleneck? Does your application really looses performance here? How much? Only profilers (CPU and GPU) can answer. But to run it, you must first complete your algorithm (stages 3 and 4). So, I'd better stick with current solution, and started to implement whole algorithm, then profile and than fix performance issues.
But, if you feel ready to tweaks... Common "repetition" technology is instancing. You can create one more vertex buffer (called instance buffer), which will contains parameters not for each vertex, but for one draw instance. Then you do all the stuff with one DrawInstanced() call.
For you first stage, instance buffer can contain your D value and index of target Texture3D layer. You can pass-through them from vertex shader.
As always, you have a tradeof here: simplicity of code to (probably) performance.
2. Multi-pass rendering
CPU needs to be involved to pass results from temp texture (result of
V pass) to the second pass (H pass)
Typically, you do chaining like this, so no CPU involved:
// Pass 1: from pTexture0 to pTexture1
// ...set up pipeline state for Pass1 here...
pContext->PSSetShaderResources(slot, 1, pTexture0); // source
pContext->OMSetRenderTargets(1, pTexture1, 0); // target
pContext->Draw(...);
// Pass 2: from pTexture1 to pTexture2
// ...set up pipeline state for Pass1 here...
pContext->PSSetShaderResources(slot, 1, pTexture1); // previous target is now source
pContext->OMSetRenderTargets(1, pTexture2, 0);
pContext->Draw(...);
// Pass 3: ...
Note, that pTexture1 must have both D3D11_BIND_SHADER_RESOURCE and D3D11_BIND_RENDER_TARGET flags. You can have multiple input textures and multiple render targets. Just make sure, that every next pass knows what previous pass outputs.
And if previous pass uses more resources than current, don't forget to unbind unneeded, to prevent hard-to-find errors:
pContext->PSSetShaderResources(2, 1, 0);
pContext->PSSetShaderResources(3, 1, 0);
pContext->PSSetShaderResources(4, 1, 0);
// Only 0 and 1 texture slots will be used
3. Resource data location
Does all textures resides in GPU memory all the time even between
Draw() method calls and Pixel/Vertex shaders switching?
We can never know that. Driver chooses appropriate location for resources. But if you have resources created with DEFAULT usage and 0 CPU access flag, you can be almost sure it will always be in video memory.
Hope it helps. Happy coding!

Resources