Add Bias to a Matrix in Torch - lua

In Torch, how do I add a bias vector to each input to when i have a batch input? Suppose I have an input 3*2 matrix (where 2 = number of classes)
A
0.8191 0.2630
0.5344 0.4537
0.7380 0.5885
and I want to add the bias value to each element in the output matrix:
BIAS:
0.6588 0.6525
My final output should look like:
1.4779 0.9155
1.1931 1.1063
1.3967 1.2410
I am new to Torch and just figuring out the Syntax.

You can expand the bias to have the same dimensions as your input:
expandedBias=torch.expand(BIAS,3,2)
yields:
th> expandedBias
0.6588 0.6525
0.6588 0.6525
0.6588 0.6525
After that you can simply add them:
output=A+expandedBias
to give:
th> A+expandedBias
1.4779 0.9155
1.1931 1.1063
1.3967 1.2410

If you are using one of the latest versions of the torch, you do not even need to expand the bias.
you can directly write.
output = A + bias
The bias matrix will be broadcasted automatically. Check the documentation for the details of broadcasting.
https://pytorch.org/docs/stable/notes/broadcasting.html

Related

Scikit-Learn issues error for RandomForestClassifier for multilabel classification - Jagged arrays

Scikit-Learn RandomForestClassifier throws an error for a multilabel classification problem.
This code creates a RandomForestClassifier multilabel object, given predictors C and multi-labels out with no error.
C = np.array([[2,4,6],[4,2,1],[8,3,1]])
out = np.array([[0,1],[0,1],[1,0]])
rf = RandomForestClassifier(n_estimators=100, oob_score=True)
rf.fit(C,out)
If I modify the multilabels, so that all the elements at a certain index are the same, say (where all the first components of the multilabels equals zero)
out = np.array([[0,1],[0,1],[0,0]])
I get an error and traceback:
VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a
list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated.
If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
y_pred = np.array(y_pred, copy=False)
raise ValueError(
507 "The type of target cannot be used to compute OOB "
508 f"estimates. Got {y_type} while only the following are "
509 "supported: continuous, continuous-multioutput, binary, "
510 "multiclass, multilabel-indicator."
511 )
ValueError: could not broadcast input array from shape (2,1) into shape (2,)
Not requesting OOB predictions does not result in an error:
rf_err = RandomForestClassifier(n_estimators=100, oob_score=False)
I cannot figure out why keeping the OOB predictions would trigger such an error, when all the n-component of a multilabel are equal.
In your setup out_err = np.array([[0,1],[0,1],[0,0]]) you do not have any examples of the second class, so you only have elements of 1 class.
That means that there is no 'class label' dimension and it can be omitted. That's why you see (2,) shape.
Please, describe your initial intent: why would you need to set a particular position in labels to 0. If you try to go with N-1 classes instead of N classes I suggest removing the position itself and the elements of the class from the dataset, not putting all zeros:
out=[[1,0,0],[0,1,0],[0,1,0],[0,0,1],[1,0,0]] # 3 classes
# remove the second class:
out=[[1,0],[0,1],[1,0]] # 2 classes

Where is perplexity calculated in the Huggingface gpt2 language model code?

I see some github comments saying the output of the model() call's loss is in the form of perplexity:
https://github.com/huggingface/transformers/issues/473
But when I look at the relevant code...
https://huggingface.co/transformers/_modules/transformers/modeling_openai.html#OpenAIGPTLMHeadModel.forward
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
outputs = (loss,) + outputs
return outputs # (loss), lm_logits, (all hidden states), (all attentions)
I see cross entropy being calculated, but no transformation into perplexity. Where does the loss finally get transformed? Or is there a transformation already there that I'm not understanding?
Ah ok, I found the answer. The code is actually returning cross entropy. In the github comment where they say it is perplexity...they are saying that because the OP does
return math.exp(loss)
which transforms entropy to perplexity :)
No latex no problem. By definition the perplexity (triple P) is:
PP(p) = e^(H(p))
Where H stands for chaos (Ancient Greek: χάος) or entropy. In general case we have the cross entropy:
PP(p) = e^(H(p,q))
e is the natural base of the logarithm which is how PyTorch prefers to compute the entropy and cross entropy.

How does binary cross entropy loss work on autoencoders?

I wrote a vanilla autoencoder using only Dense layer.
Below is my code:
iLayer = Input ((784,))
layer1 = Dense(128, activation='relu' ) (iLayer)
layer2 = Dense(64, activation='relu') (layer1)
layer3 = Dense(28, activation ='relu') (layer2)
layer4 = Dense(64, activation='relu') (layer3)
layer5 = Dense(128, activation='relu' ) (layer4)
layer6 = Dense(784, activation='softmax' ) (layer5)
model = Model (iLayer, layer6)
model.compile(loss='binary_crossentropy', optimizer='adam')
(trainX, trainY), (testX, testY) = mnist.load_data()
print ("shape of the trainX", trainX.shape)
trainX = trainX.reshape(trainX.shape[0], trainX.shape[1]* trainX.shape[2])
print ("shape of the trainX", trainX.shape)
model.fit (trainX, trainX, epochs=5, batch_size=100)
Questions:
1) softmax provides probability distribution. Understood. This means, I would have a vector of 784 values with probability between 0 and 1. For example [ 0.02, 0.03..... upto 784 items], summing all 784 elements provides 1.
2) I don't understand how the binary crossentropy works with these values. Binary cross entropy is for two values of output, right?
In the context of autoencoders the input and output of the model is the same. So, if the input values are in the range [0,1] then it is acceptable to use sigmoid as the activation function of last layer. Otherwise, you need to use an appropriate activation function for the last layer (e.g. linear which is the default one).
As for the loss function, it comes back to the values of input data again. If the input data are only between zeros and ones (and not the values between them), then binary_crossentropy is acceptable as the loss function. Otherwise, you need to use other loss functions such as 'mse' (i.e. mean squared error) or 'mae' (i.e. mean absolute error). Note that in the case of input values in range [0,1] you can use binary_crossentropy, as it is usually used (e.g. Keras autoencoder tutorial and this paper). However, don't expect that the loss value becomes zero since binary_crossentropy does not return zero when both prediction and label are not either zero or one (no matter they are equal or not). Here is a video from Hugo Larochelle where he explains the loss functions used in autoencoders (the part about using binary_crossentropy with inputs in range [0,1] starts at 5:30)
Concretely, in your example, you are using the MNIST dataset. So by default the values of MNIST are integers in the range [0, 255]. Usually you need to normalize them first:
trainX = trainX.astype('float32')
trainX /= 255.
Now the values would be in range [0,1]. So sigmoid can be used as the activation function and either of binary_crossentropy or mse as the loss function.
Why binary_crossentropy can be used even when the true label values (i.e. ground-truth) are in the range [0,1]?
Note that we are trying to minimize the loss function in training. So if the loss function we have used reaches its minimum value (which may not be necessarily equal to zero) when prediction is equal to true label, then it is an acceptable choice. Let's verify this is the case for binray cross-entropy which is defined as follows:
bce_loss = -y*log(p) - (1-y)*log(1-p)
where y is the true label and p is the predicted value. Let's consider y as fixed and see what value of p minimizes this function: we need to take the derivative with respect to p (I have assumed the log is the natural logarithm function for simplicity of calculations):
bce_loss_derivative = -y*(1/p) - (1-y)*(-1/(1-p)) = 0 =>
-y/p + (1-y)/(1-p) = 0 =>
-y*(1-p) + (1-y)*p = 0 =>
-y + y*p + p - y*p = 0 =>
p - y = 0 => y = p
As you can see binary cross-entropy have the minimum value when y=p, i.e. when the true label is equal to predicted label and this is exactly what we are looking for.

DL4J Prediction Formatting

I have two questions on deeplearning4j that are somewhat related.
When I execute “INDArray predicted = model.output(features,false);” to generate a prediction, I get the label predicted by the model; it is either 0 or 1. I tried to search for a way to have a probability (value between 0 and 1) instead of strictly 0 or 1. This is useful when you need to set a threshold for what your model should consider as a 0 and what it should consider as a 1. For example, you may want your model to output '1' for any prediction that is higher than or equal to 0.9 and output '0' otherwise.
My second question is that I am not sure why the output is represented as a two-dimensional array (shown after the code below) even though there are only two possibilities, so it would be better to represent it with one value - especially if we want it as a probability (question #1) which is one value.
PS: in case relevant to the question, in the Schema the output column is defined using ".addColumnInteger". Below are snippets of the code used.
Part of the code:
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(1)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.learningRate(learningRate)
.updater(org.deeplearning4j.nn.conf.Updater.NESTEROVS).momentum(0.9)
.list()
.layer(0, new DenseLayer.Builder()
.nIn(numInputs)
.nOut(numHiddenNodes)
.weightInit(WeightInit.XAVIER)
.activation("relu")
.build())
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.weightInit(WeightInit.XAVIER)
.activation("softmax")
.weightInit(WeightInit.XAVIER)
.nIn(numHiddenNodes)
.nOut(numOutputs)
.build()
)
.pretrain(false).backprop(true).build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();
model.setListeners(new ScoreIterationListener(10));
for (int n=0; n<nEpochs; n++) {
model.fit(trainIter);
}
Evaluation eval = new Evaluation(numOutputs);
while (testIter.hasNext()){
DataSet t = testIter.next();
INDArray features = t.getFeatureMatrix();
System.out.println("Input features: " + features);
INDArray labels = t.getLabels();
INDArray predicted = model.output(features,false);
System.out.println("Predicted output: "+ predicted);
System.out.println("Desired output: "+ labels);
eval.eval(labels, predicted);
System.out.println();
}
System.out.println(eval.stats());
Output from running the code above:
Input features: [0.10, 0.34, 1.00, 0.00, 1.00]
Predicted output: [1.00, 0.00]
Desired output: [1.00, 0.00]
*What I want the output to look like (i.e. a one-value probability):**
Input features: [0.10, 0.34, 1.00, 0.00, 1.00]
Predicted output: 0.14
Desired output: 0.0
I will answer your questions inline but I just want to note:
I would suggest taking a look at our docs and examples:
https://github.com/deeplearning4j/dl4j-examples
http://deeplearning4j.org/quickstart
A 100% 0 or 1 is just a badly tuned neural net. That's not at all how things work. A softmax by default returns probabilities. Your neural net is just badly tuned. Look at updating dl4j too. I'm not sure what version you're on but we haven't used strings in activations for at least a year now? You seem to have skipped a lot of steps when starting with us. I'll reiterate again, at least take a look above for a starting point rather than using year old code.
What you're seeing there is just standard deep learning 101. So the advice I'm about to give you can be found on the internet and is applicable for any deep learning software. A two label softmax sums each row to 1. If you want 1 label, use sigmoid with 1 output and a different loss function. We use softmax because it can work for any number of ouputs and all you have to do is change the number of outputs rather than having to change the loss function and activation function on top of that.

How to apply different cost functions to different output channels of a convolutional network?

I have a convolutional neural network whose output is a 4-channel 2D image. I want to apply sigmoid activation function to the first two channels and then use BCECriterion to computer the loss of the produced images with the ground truth ones. I want to apply squared loss function to the last two channels and finally computer the gradients and do backprop. I would also like to multiply the cost of the squared loss for each of the two last channels by a desired scalar.
So the cost has the following form:
cost = crossEntropyCh[{1, 2}] + l1 * squaredLossCh_3 + l2 * squaredLossCh_4
The way I'm thinking about doing this is as follow:
criterion1 = nn.BCECriterion()
criterion2 = nn.MSECriterion()
error = criterion1:forward(model.output[{{}, {1, 2}}], groundTruth1) + l1 * criterion2:forward(model.output[{{}, {3}}], groundTruth2) + l2 * criterion2:forward(model.output[{{}, {4}}], groundTruth3)
However, I don't think this is the correct way of doing it since I will have to do 3 separate backprop steps, one for each of the cost terms. So I wonder, can anyone give me a better solution to do this in Torch?
SplitTable and ParallelCriterion might be helpful for your problem.
Your current output layer is followed by nn.SplitTable that splits your output channels and converts your output tensor into a table. You can also combine different functions by using ParallelCriterion so that each criterion is applied on the corresponding entry of output table.
For details, I suggest you read documentation of Torch about tables.
After comments, I added the following code segment solving the original question.
M = 100
C = 4
H = 64
W = 64
dataIn = torch.rand(M, C, H, W)
layerOfTables = nn.Sequential()
-- Because SplitTable discards the dimension it is applied on, we insert
-- an additional dimension.
layerOfTables:add(nn.Reshape(M,C,1,H,W))
-- We want to split over the second dimension (i.e. channels).
layerOfTables:add(nn.SplitTable(2, 5))
-- We use ConcatTable in order to create paths accessing to the data for
-- numereous number of criterions. Each branch from the ConcatTable will
-- have access to the data (i.e. the output table).
criterionPath = nn.ConcatTable()
-- Starting from offset 1, NarrowTable will select 2 elements. Since you
-- want to use this portion as a 2 dimensional channel, we need to combine
-- then by using JoinTable. Without JoinTable, the output will be again a
-- table with 2 elements.
criterionPath:add(nn.Sequential():add(nn.NarrowTable(1, 2)):add(nn.JoinTable(2)))
-- SelectTable is simplified version of NarrowTable, and it fetches the desired element.
criterionPath:add(nn.SelectTable(3))
criterionPath:add(nn.SelectTable(4))
layerOfTables:add(criterionPath)
-- Here goes the criterion container. You can use this as if it is a regular
-- criterion function (Please see the examples on documentation page).
criterionContainer = nn.ParallelCriterion()
criterionContainer:add(nn.BCECriterion())
criterionContainer:add(nn.MSECriterion())
criterionContainer:add(nn.MSECriterion())
Since I used almost every possible table operation, it looks a little bit nasty. However, this is the only way I could solve this problem. I hope that it helps you and others suffering from the same problem. This is how the result looks like:
dataOut = layerOfTables:forward(dataIn)
print(dataOut)
{
1 : DoubleTensor - size: 100x2x64x64
2 : DoubleTensor - size: 100x1x64x64
3 : DoubleTensor - size: 100x1x64x64
}

Resources