Overfitting and Data splitting - machine-learning

Let's say that I have a data file like:
Index,product_buying_date,col1,col2
0,2013-01-16,34,Jack
1,2013-01-12,43,Molly
2,2013-01-21,21,Adam
3,2014-01-09,54,Peirce
4,2014-01-17,38,Goldberg
5,2015-01-05,72,Chandler
..
..
2000000,2015-01-27,32,Mike
with some more data and I have a target variable y. Assume something as per your convenience.
Now I am aware that we divide the data into 2 parts i.e. Train and Test. And then we divide Train into 70:30, build the model with 70% and validate it with 30%. We tune the parameters so that model does not get overfit. And then predict with the Test data. For example: I divide 2000000 into two equal parts. 1000000 is train and I divide it in validate i.e. 30% of 1000000 which is 300000 and 70% is where I build the model i.e. 700000.
QUESTION: Is the above logic depending upon how the original data splits?
Generally we shuffle the data and then break it into train, validate and test. (train + validate = Train). (Please don't confuse here)
But what if the split is alternate. Like When I divide it in Train and Test first, I give even rows to Test and odd rows to Train. (Here data is initially sort on the basis of 'product_buying_date' column so when i split it in odd and even rows it gets uniformly split.
And when I build the model with Train I overfit it so that I get maximum AUC with Test data.
QUESTION: Isn't overfitting helping in this case?

QUESTION: Is the above logic depending upon how the original data
splits?
If dataset is large(hundred of thousand), you can randomly split the data and you should not have any problem but if dataset is small then you can adopt the different approaches like cross-validation to generate the data set. Cross-validation states that you split you make n number of training-validation set out of your Training set.
suppose you have 2000 data points, you split like
1000 - Training dataset
1000 - testing dataset.
5-cross validation would mean that you would make five 800/200 training/validation dataset.
QUESTION: Isn't overfitting helping in this case?
Number one rule of the machine learning is that, you don't touch the test data set. It's a holly data set that should not be touched.
If you overfit the test data to get maximum AUC score then there won't be any meaning of validation dataset. Foremost aim of any ml algorithm is to reduce the generalization error i.e. algorithm should be able to perform good on unseen data. If you would tune your algorithm with testing data. you won't be able to meet this criteria. In cross-validation also you do not touch your testing set. you select your algorithm. tune its parameter with validation dataset and after you have done with that apply your algorithm to test dataset which is your final score.

Related

Can I assess my model's performance with LOOCV on the whole dataset?

Let's say I initially split my dataset into training (80%) and test (20%) sets, perform a 10-fold CV on my training set and obtain an average R² of 75%. After that I check the best model's accuracy on the test set and obtain an R² of 74%, which indicates that the model is fairly robust. Now, before deploying it to real applications, I tune it with the whole data. Someone asks me the model's approximate R²; if I say 74% or 75%, I will me ignoring the fact that the model was now tunned with more data (test set). Is it a resonable approach to perform a leave one out CV on the chosen model with the whole data, compare the predicted targets with the real ones, check the R² (let's say it's 80% now) and say that the real-world model will most likely have an R² of 80%? I see no problems with that, but I do not know if this approach is correct.
It is true that you should train again on the whole data and it might lead to performance improvements. However, in this context your whole data should not be train + test! It should be just the trainign dataset but without any cross-validation. So before you had %80 for training and you were doing 10 fold CV, meaning that you were training your model actually on %72 of your complete data(train+test) and keeping the %8 for the validation. Now you should train it on the whole %80 percent and report your final results again on the unseen test set.
If you do LOOCV on the train + test, you can not report your performance on validation samples because this is how the model is finetuned and you might as well overfit to validation data.

Why does my Random Forest Classifier perform better on test and validation data than on training data?

I'm currently training a random forest on some data I have and I'm finding that the model performs better on the validation set, and even better on the test set, than on the train set. Here are some details of what I'm doing - please let me know if I've missed any important information and I will add it in.
My question
Am I doing anything obviously wrong and do you have any advice for how I should improve my approach because I just can't believe that I'm doing it right when my model predicts significantly better on unseen data than training data!
Data
My underlying data consists of tables of features describing customer behaviour and a binary target (so this is a binary classification problem). Technically I have one such table per month and I tend to use several months of data to train and then a different month to predict (e.g. Train on Apr, May and Predict on Jun)
Generally this means I end up with a training dataset of about 100k rows and 20 features (I've previously looked into feature selection and found a set of 7 features which seem to perform best, so have been using these lately). My prediction set generally has around 50k rows.
My dataset is heavily unbalanced (approximately 2% incidence of target feature), so I'm using oversampling techniques - more on that below.
Method
I've searched around online quite a lot and this has led me to the following approach:
Take scaleable (continuous) features in the training data and standardise them (currently using sklearn StandardScaler)
Take categorical features and encode them into separate binary columns (one-hot) using Pandas get_dummies function
Remove 10% of the training data to form a validation set (I'm currently using a random seed in this process for comparability whilst I vary different things such as hyperparameters in the model)
Take the remaining 90% of training data and perform a grid search across a few parameters of the RandomForestClassifier() (currently min_samples_split, max_depth, n_estimators and max_features)
Within each hyperparameter combination from the grid I perform kfold validation with 5 folds and using a random state
Within each fold I oversample my minority class for training data only (sometimes using imbalanced-learn's RandomOverSampler() and sometimes using SMOTE() from the same package), train the model on the training data and then apply the model to the kth fold and record performance metrics (precision, recall, F1 and AUC)
Once I've been through 5 folds on each hyperparameter combination I find the best F1 score (and best precision if two combinations are tied on F1 score) and retrain a random forest on the entire 90% training data using those hyperparameters. During this step I use the same oversampling technique as I did in the kfold process
I then use this model to make predictions on the 10% of training data that I put aside earlier as a validation set, evaluating the same metrics as above
Finally I have a test set, which is actually based on data from another month, which I apply the already trained model to and evaluate the same metrics
Outcome
At the moment I'm finding that my training set achieves an F1 score of around 30%, the validation set is consistently slightly higher than this at around 36% (mostly driven by a much better precision than the training data e.g. 60% vs. 30%) and then the testing set is getting an F1 score of between 45% and 50% which is again driven by a better precision (around 65%)
Notes
Please do ask about any details I haven't mentioned; I've had my stuck in this for weeks and so have doubtless omitted some details
I've had a brief look (not a systematic analysis) of the stability of metrics between folds in the kfold validation and it seems that they aren't varying very much, so I'm fairly happy with the stability of the model here
I'm actually performing the grid search manually rather than using a Python pipeline because try as I might I couldn't get imbalanced-learn's Pipeline function to work with the oversampling functions and so I run a loop with combinations of hyperparameters, but I'm confident that this isn't impacting the results I've talked about above in an adverse way
When I apply the final model to the prediction data (and get an F1 score around 45%) I also apply it back to the training data itself out of interest and get F1 scores around 90% - 100%. I suppose this is to be expected as the model is trained and predicts on almost exactly the same data (except the 10% holdout validation set)

Can i predict and evaluated model with the whole dataset?

I split the dataset into train and test of 80-20 ration respectively. I predicted and evaluated with test dataset. And my question is can we evaluate and predict model with the whole dataset before that I shuffle entire dataset. Can we do that? If not, why should not we do that? what is wrongdoing like that?
Data Snooping is the quick answer what you are looking for.
In other words, your model would seem outperforming on your test data if it was trained on 100% data first. Model would become an overfitted model that basically would predict seen data with higher accuracy however would fail to do so with any sort of unseen test data.
You can do it, however it would result in overfitted model. You can try k fold cross validation method in stead.
If you use the whole dataset for training, the model will fit to all the variances in data (overfitting). As a result, the performance of your model on similar data will be high. However, the model will exhibit low performance on unseen data with a different distribution compared to your training dataset. One way to prevent this is to: a) split your data into training, validation, and testing datasets (see the note below), b) apply k-fold cross-validation on training and validation splits, c) verify the performance of your models from step b on the third split (test dataset).
Note: There is no consensus on the naming of the splits. Some sources name them training-validation-testing while others use training-testing-validation.

How do neural networks learn functions instead of memorize them?

For a class project, I designed a neural network to approximate sin(x), but ended up with a NN that just memorized my function over the data points I gave it. My NN took in x-values with a batch size of 200. Each x-value was multiplied by 200 different weights, mapping to 200 different neurons in my first layer. My first hidden layer contained 200 neurons, each one a linear combination of the x-values in the batch. My second hidden layer also contained 200 neurons, and my loss function was computed between the 200 neurons in my second layer and the 200 values of sin(x) that the input mapped to.
The problem is, my NN perfectly "approximated" sin(x) with 0 loss, but I know it wouldn't generalize to other data points.
What did I do wrong in designing this neural network, and how can I avoid memorization and instead design my NN's to "learn" about the patterns in my data?
It is same with any machine learning algorithm. You have a dataset based on which you try to learn "the" function f(x), which actually generated the data. In real life datasets, it is impossible to get the original function from the data, and therefore we approximate it using something g(x).
The main goal of any machine learning algorithm is to predict unseen data as best as possible using the function g(x).
Given a dataset D you can always train a model, which will perfectly classify all the datapoints (you can use a hashmap to get 0 error on the train set), but which is overfitting or memorization.
To avoid such things, you yourself have to make sure that the model does not memorise and learns the function. There are a few things which can be done. I am trying to write them down in an informal way (with links).
Train, Validation, Test
If you have large enough dataset, use Train, Validation, Test splits. Split the dataset in three parts. Typically 60%, 20% and 20% for Training, Validation and Test, respectively. (These numbers can vary based on need, also in case of imbalanced data, check how to get stratified partitions which preserve the class ratios in every split). Next, forget about the Test partition, keep it somewhere safe, don't touch it. Your model, will be trained using the Training partition. Once you have trained the model, evaluate the performance of the model using the Validation set. Then select another set of hyper-parameter configuration for your model (eg. number of hidden layer, learaning algorithm, other parameters etc.) and then train the model again, and evaluate based on Validation set. Keep on doing this for several such models. Then select the model, which got you the best validation score.
The role of validation set here is to check what the model has learned. If the model has overfit, then the validation scores will be very bad, and therefore in the above process you will discard those overfit models. But keep in mind, although you did not use the Validation set to train the model, directly, but the Validation set was used indirectly to select the model.
Once you have selected a final model based on Validation set. Now take out your Test set, as if you just got new dataset from real life, which no one has ever seen. The prediction of the model on this Test set will be an indication how well your model has "learned" as it is now trying to predict datapoints which it has never seen (directly or indirectly).
It is key to not go back and tune your model based on the Test score. This is because once you do this, the Test set will start contributing to your mode.
Crossvalidation and bootstrap sampling
On the other hand, if your dataset is small. You can use bootstrap sampling, or k-fold cross-validation. These ideas are similar. For example, for k-fold cross-validation, if k=5, then you split the dataset in 5 parts (also be carefull about stratified sampling). Let's name the parts a,b,c,d,e. Use the partitions [a,b,c,d] to train and get the prediction scores on [e] only. Next, use the partitions [a,b,c,e] and use the prediction scores on [d] only, and continue 5 times, where each time, you keep one partition alone and train the model with the other 4. After this, take an average of these scores. This is indicative of that your model might perform if it sees new data. It is also a good practice to do this multiple times and perform an average. For example, for smaller datasets, perform a 10 time 10-folds cross-validation, which will give a pretty stable score (depending on the dataset) which will be indicative of the prediction performance.
Bootstrap sampling is similar, but you need to sample the same number of datapoints (depends) with replacement from the dataset and use this sample to train. This set will have some datapoints repeated (as it was a sample with replacement). Then use the missing datapoins from the training dataset to evaluate the model. Perform this multiple times and average the performance.
Others
Other ways are to incorporate regularisation techniques in the classifier cost function itself. For example in Support Vector Machines, the cost function enforces conditions such that the decision boundary maintains a "margin" or a gap between two class regions. In neural networks one can also do similar things (although it is not same as in SVM).
In neural network you can use early stopping to stop the training. What this does, is train on the Train dataset, but at each epoch, it evaluates the performance on the Validation dataset. If the model starts to overfit from a specific epoch, then the error for Training dataset will keep on decreasing, but the error of the Validation dataset will start increasing, indicating that your model is overfitting. Based on this one can stop training.
A large dataset from real world tends not to overfit too much (citation needed). Also, if you have too many parameters in your model (to many hidden units and layers), and if the model is unnecessarily complex, it will tend to overfit. A model with lesser pameter will never overfit (though can underfit, if parameters are too low).
In the case of you sin function task, the neural net has to overfit, as it is ... the sin function. These tests can really help debug and experiment with your code.
Another important note, if you try to do a Train, Validation, Test, or k-fold crossvalidation on the data generated by the sin function dataset, then splitting it in the "usual" way will not work as in this case we are dealing with a time-series, and for those cases, one can use techniques mentioned here
First of all, I think it's a great project to approximate sin(x). It would be great if you could share the snippet or some additional details so that we could pin point the exact problem.
However, I think that the problem is that you are overfitting the data hence you are not able to generalize well to other data points.
Few tricks that might work,
Get more training points
Go for regularization
Add a test set so that you know whether you are overfitting or not.
Keep in mind that 0 loss or 100% accuracy is mostly not good on training set.

Machine learning: training model from test data

I was wondering if a model trains itself from the test data as well while evaluating it multiple times, leading to a over-fitting scenario. Normally we split the training data into train-test splits and I noticed some people split it into 3 sets of data - train, test and eval. eval is for final evaluation of the model. I might be wrong but my point is that if the above mentioned scenario is not true, then there is no need for an eval data set.
Need some clarification.
The best way to evaluate how well a model will perform in the 'wild' is to evaluate its performance on a data set it has not seen (i.e., been trained on) -- assuming you have the labels in a supervised learning problem.
People split their data into train/test/eval and use the training data to estimate/learn the model parameters and the test set to tune the model (e.g., by trying different hyperparameter combinations). A model is usually selected based on the hyperparameter combination that optimizes a test metric (regression - MSE, R^2, etc.; classification - AUC, accuracy, etc.). Then the selected model is usually retrained on the combined train + test data set. After retraining, the model is evaluated based on its performance on the eval data set (assuming you have some ground truth labels to evaluate your predictions). The eval metric is what you report as the generalization metric -- that is, how well your model performs on novel data.
Does this help?
Consider you have train and test datasets. Train dataset is the one in which you know the output and you train your model on train dataset and you try to predict the output of Test dataset.
Most people split train dataset into train and validation. So first you run your model on train data and evaluate it on validation set. Then again you run the model on test dataset.
Now you are wondering how this will help and of any use?
This helps you to understand your model performance on seen data(validation data) and unseen data(your test data).
Here comes bias-variance trade-off into picture.
https://machinelearningmastery.com/gentle-introduction-to-the-bias-variance-trade-off-in-machine-learning/
Let's consider a binary classification example where a student's previous semester grades, Sports achievements, Extracurriculars etc are used to predict whether or not he will pass the final semester.
Let's say we have around 10000 samples (data of 10000 students).
Now we split them:
Training set - 6000 samples
Validation set - 2000 samples
Test set - 1000 samples
The training data is generally split into three (training set, validation set, and test set) for the following reasons:
1) Feature Selection: Let's assume you have trained the model using some algorithm. You calculate the training accuracy and validation accuracy. You plot the learning curves and find if the model is overfitting or underfitting and make changes (add or remove features, add more samples etc). Repeat until you have the best validation accuracy. Now test the model with the test set to get your final score.
2) Parameter Selection: When you use algorithms like KNN, And you need to find the best K value which fits the model properly. You can plot the accuracy of different K value and choose the best validation accuracy and use it for your test set. (same applies when you find n_estimators for Random forests etc)
3) Model Selection: Also you can train the model with different algorithms and choose the model which better fits the data by testing out the accuracy using validation set.
So basically the Validation set helps you evaluate your model's performance how you must fine-tune it for best accuracy.
Hope you find this helpful.

Resources